RP Photonics logo
RP Photonics
Consulting Software Encyclopedia Buyer's Guide

Short address: rpp-con.com

Dr. Paschotta, the founder of RP Photonics, supports your R & D with his deep expertise. Save time and money with efficient support!

Short address: rpp-soft.com

Powerful simulation software for fiber lasers and amplifiers, resonator design, pulse propagation and multilayer coating design.

Short address: rpp-enc.com

The famous Encyclopedia of Laser Physics and Technology provides a wealth of high-quality scientific and technical information.

Short address: rpp-bg.com

In the RP Photonics Buyer's Guide, you easily find suppliers for photo­nics products. As a supp­lier, you can profit from enhanced entries!

Learn on lasers and photonics every day!
VL logo part of the

Argon Ion Lasers

<<<  |  >>>  |  Feedback

Buyer's Guide

The ideal place to find suppliers for photonics products: high-quality information, simple and fast, respects your privacy!

19 suppliers for argon ion lasers are listed.

Your are not yet listed? Get your entry!

Definition: gas lasers based on light amplification in ionized argon in a gas discharge

German: Argon-Ionen-Laser

Category: lasers

How to cite the article; suggest additional literature

Argon ion lasers are powerful gas lasers, which typically generate multiple watts of optical power in a green or blue output beam with high beam quality.

The core component of an argon ion laser is an argon-filled tube, made e.g. of beryllium oxide ceramics, in which an intense electrical discharge between two hollow electrodes generates a plasma with a high density of argon (Ar+) ions. A solenoid around the tube (not shown in Figure 1) can be used for generating a magnetic field, which increases the output power by better confining the plasma.

argon-ion laser

Figure 1: Setup of a 20-W argon ion laser. The gas discharge with high current density occurs between the hollow anode and cathode. The intracavity prism can be rotated to select the operation wavelength.

A typical device, containing a tube with a length of the order of 1 m, can generate 10 W or 20 W of output power in the green spectral region at 514.5 nm, using several tens of kilowatts of electric power. (The voltage drop across the tube may be 100 V or a few hundred volts, whereas the current can be several tens of amperes.) The dissipated heat must be removed with a water flow around the tube; a closed-circle cooling system often contains a chiller, which further adds to the power consumption. The total wall-plug efficiency is thus very low, usually below 0.1%. There are smaller air-cooled argon ion lasers, generating some tens of milliwatts of output power from several hundred watts of electric power.

The laser can be switched to other wavelengths such as 457.9 nm (blue), 488.0 nm (blue–green), or 351 nm (ultraviolet) by rotating the intracavity prism (on the right-hand side). The highest output power is achieved on the standard 514.5-nm line. Without an intracavity prism, argon ion lasers have a tendency for multi-line operation with simultaneous output at various wavelengths.

There are similar noble gas ion lasers based on krypton instead of argon. Krypton ion lasers typically emit at 647.1 nm, 413.1 nm, or 530.9 nm, but various other lines in the visible, ultraviolet and infrared spectral region are accessible.

Other types of ion lasers are mentioned in the article on gas lasers.


Multi-watt argon ion lasers can be used e.g. for pumping titanium–sapphire lasers and dye lasers, or for laser light shows. They are rivaled by frequency-doubled diode-pumped solid-state lasers. The latter are far more power efficient and have longer lifetimes, but are more expensive. Argon tubes have a limited lifetime of the order of a few thousand hours. An argon laser may thus be preferable if it is used only during a limited number of hours, whereas a diode-pumped solid-state laser is the better solution for reliable and efficient long-term operation.

Laser safety issues arise both from the high output power of typical ion lasers and from the high voltage applied to the tube.


[1]W. B. Bridges, “Laser oscillation in singly ionized argon in the visible spectrum”, Appl. Phys. Lett. 4, 128 (1964); erratum: Appl. Phys. Lett. 5, 39 (1964)
[2]O. Svelto, Principles of Lasers, Plenum Press, New York (1998)

(Suggest additional literature!)

See also: gas lasers, green lasers, visible lasers

How do you rate this article?

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media:


How to Fight Fraud in Science?

We occasionally read about scientific fraud – things like fabricated or manipulated measurement results – which is utterly unfair and also undermines the trust of the public in science and its results.

How to fight that problem?

Unfortunately, the discussion of fraud often misses essential aspects. Our Photonics Spotlight article on science fraud digs deeper. It suggests that the risk of fraud is close to zero where supervisors do a responsible job. Relations to a more widespread problem – corrupt authorship practices – are also identified.

– Show all banners –

– Get your own banner! –