RP Photonics logo
RP Photonics
Encyclopedia
Consulting Software Encyclopedia Buyer's Guide

Short address: rpp-con.com

Dr. Paschotta, the founder of RP Photonics, supports your R & D with his deep expertise. Save time and money with efficient support!

Short address: rpp-soft.com

Powerful simulation software for fiber lasers and amplifiers, resonator design, pulse propagation and multilayer coating design.

Short address: rpp-enc.com

The famous Encyclopedia of Laser Physics and Technology provides a wealth of high-quality scientific and technical information.

Short address: rpp-bg.com

In the RP Photonics Buyer's Guide, you easily find suppliers for photo­nics products. As a supp­lier, you can profit from enhanced entries!

Learn on lasers and photonics every day!
VL logo part of the
Virtual
Library

Birefringence

<<<  |  >>>  |  Feedback

Buyer's Guide

The ideal place to find suppliers for photonics products: high-quality information, simple and fast, respects your privacy!

29 suppliers for birefringent materials are listed.

Your are not yet listed? Get your entry!

Definition: the phenomenon of double refraction, or the polarization dependence of the refractive index in a medium

German: Doppelbrechung

Category: general optics

How to cite the article; suggest additional literature

In the literature, the term birefringence occurs with two different meanings. In classical optics, it is normally considered to have the same meaning as double refraction, as explained below. In nonlinear optics and laser technology, however, birefringence is usually meant to be the property of some non-isotropic transparent material that the refractive index depends on the polarization direction (direction of the electric field). The latter property makes this material (then called birefringent) capable of exhibiting double refraction, when being hit by an unpolarized light beam.

Consequences of a Polarization-dependent Refractive Index

The polarization dependence of the refractive index can have a variety of effects:

Examples of Birefringence

In laser technology and nonlinear optics, the phenomenon of birefringence occurs mainly in the context of non-isotropic crystals:

Even in a naturally isotropic medium, birefringence can be induced e.g. by inhomogeneous mechanical stress. This can be observed e.g. by placing a piece of acrylic between two crossed polarizers: when stress is applied to the acrylic, one observes colored patterns resulting from the wavelength-dependent effect of stress-induced birefringence. Similar effects occur in bent optical fibers, and also due to thermal effects in laser crystals, which can lead to depolarization loss.

Straight optical fibers usually exhibit only a small degree of random birefringence, which can however scramble the polarization state of guided light over some propagation distance, e.g. 1 m. There are polarization-maintaining fibers, where a strong artificial birefringence can be used for suppressing such effects.

Quantifying Birefringence

The magnitude of birefringence can be specified in different ways:

Bibliography

[1]R. Ulrich et al., “Bending-induced birefringence in single-mode fibers”, Opt. Lett. 5 (6), 273 (1980)
[2]S. J. Garth, “Birefringence in bent single-mode fibers”, J. Lightwave Technol. 6, 445 (1988)

(Suggest additional literature!)

See also: refraction, polarization beat length, birefringent tuners, birefringent phase matching, polarization-maintaining fibers, polarization of laser emission, spatial walk-off, fiber polarization controllers, Lyot filters, Spotlight article 2007-05-26

How do you rate this article?

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent
Comments:

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media:

arrow

RP Fiber Power – the versatile Fiber Optics Software

An Amazing Tool

RP Fiber Power software

This amazing tool is extremely helpful for the development of passive and active fiber devices.

ASE

Watch our quick video tour!

Single-mode and Multi­mode Fibers

fibers

Calculate mode properties such as

  • amplitude distributions (near field and far field)
  • effective mode area
  • effective index
  • group delay and chromatic dispersion

Also calculate fiber coupling efficiencies; simulate effects of bending, nonlinear self-focusing or gain guiding on beam propagation, higher-order soliton propagation, etc.

Arbitrary Index Profiles

A fiber's index profile may be more complicated than just a circle:

special fibers

Here, we "printed" some letters, translated this into an index profile and initial optical field, propagated the light over some distance and plotted the output field – all automated with a little script code.

Fiber Couplers, Double-clad Fibers, Multicore Fibers, …

fiber devices

Simulate pump absorption in double-clad fibers, study beam propagation in fiber couplers, light propagation in tapered fibers, analyze the impact of bending, cross-saturation effects in amplifiers, leaky modes, etc.

Fiber Amplifiers

fiber amplifier

For example, calculate

  • gain and saturation characteristics (for continuous or pulsed operation)
  • energy transfers in erbium-ytterbium-doped amplifier fibers
  • influence of quenching effects, amplified spontaneous emission etc.

in single amplifier stages or in multi-stage amplifier systems, with double-clad fibers, etc.

Fiber-optic Telecom Systems

eye diagram

For example,

  • analyze dispersive and nonlinear signal distortions
  • investigate the impact of amplifier noise
  • optimize nonlinear management and the placement of amplifiers

Find out in detail what is going on in such a system!

Fiber Lasers

fiber laser

For example, analyze and optimize the

  • power conversion efficiency
  • wavelength tuning range
  • Q switching dynamics
  • femtosecond pulse generation with mode locking

for lasers based on double-clad fiber, with linear or ring resonator, etc.

Ultrafast Fiber Lasers and Amplifiers

fiber laser

For example, study

  • pulse formation mechanisms
  • impact of nonlinearities and chromatic dispersion
  • parabolic pulse amplification
  • feedback sensitivity
  • supercontinuum generation

Apply any sequence of elements to your pulses!

… and even Bulk Devices

regenerative amplifier

For example, study

  • Q switching dynamics
  • mode-locking behavior
  • impact of nonlinearities and chromatic dispersion
  • influence of a saturable absorber
  • chirped-pulse amplification
  • regenerative amplification

RP Fiber Power is an extremely versatile tool!

Mode Solver

fiber modes

For example, calculate

  • amplitude and intensity profiles
  • effective mode areas
  • cut-off wavelengths
  • propagation constants
  • group velocities
  • chromatic dispersion

All this is calculated with high efficiency!

Beam Propagation

beam propagation

Propagate optical field with arbitrary wavefronts through fibers. These may be asymmetric, bent, tapered, exhibit random disturbances, etc.

See our demo video for numerical beam propagation.

Laser-active Ions

level scheme

Work with the standard gain model, or define your own level scheme!

Can include different ions, energy transfers, upconversion and quenching effects, complicated pumping schemes, etc.

Multiple Pump and Signal Waves, ASE

optical channels

Define multiple pump and signal waves and many ASE channels – each one with its own transverse intensity profile, loss coefficient etc.

The power calculations are highly efficient and reliable.

Simple Use and High Flexibility Combined

For simpler tasks, use convenient forms:

signal parameters

Script code is automatically generated and can then be modified by the user. A powerful script language gives you an unparalleled flexibility!

High-quality Documentation and Competent Support

The carefully prepared comprehensive documentation includes a PDF manual and an interactive online help system.

Competent technical support is provided: the developer himself will help you and make sure that any problem is solved!

Our support is like included technical consulting.

Boost your competence, efficiency and creativity!

  • Stop fishing in the dark! Develop a clear quantitative understanding of your devices.
  • Explore the effects of possible design changes on your desk.
  • That way, get most efficient in the lab.
  • Find optimized solutions efficiently, minimizing time to market.
  • Get new ideas by playing with your models.

Efficiency and success of
R & D are not a matter of chance.

See our detailed description with many case studies!

Contact us to get a quotation!

– Show all banners –

– Get your own banner! –