RP Photonics logo
RP Photonics
Encyclopedia
Consulting Software Encyclopedia Buyer's Guide

Short address: rpp-con.com

Dr. Paschotta, the founder of RP Photonics, supports your R & D with his deep expertise. Save time and money with efficient support!

Short address: rpp-soft.com

Powerful simulation software for fiber lasers and amplifiers, resonator design, pulse propagation and multilayer coating design.

Short address: rpp-enc.com

The famous Encyclopedia of Laser Physics and Technology provides a wealth of high-quality scientific and technical information.

Short address: rpp-bg.com

In the RP Photonics Buyer's Guide, you easily find suppliers for photo­nics products. As a supp­lier, you can profit from enhanced entries!

Learn on lasers and photonics every day!
VL logo part of the
Virtual
Library

Distance Measurements with Lasers

<<<  |  >>>  |  Feedback

Buyer's Guide

The ideal place to find suppliers for photonics products: high-quality information, simple and fast, respects your privacy!

6 suppliers for equipment for distance measurements with lasers are listed.

Your are not yet listed? Get your entry!

Ask RP Photonics for advice concerning devices for distance measurements, such as interferometers.

German: Distanzmessung mit Lasern, Laser-Entfernungsmessung

Category: optical metrology

How to cite the article

Lasers can be used in various ways to measure distances or displacements without physical contact. In fact they allow for the most sensitive and precise length measurements, for extremely fast recordings (sometimes with a bandwidth of many megahertz), and for the largest measurement ranges, even though these qualities are usually not combined by a single technique. Depending on the specific demands, very different technical approaches can be appropriate. They find a wide range of applications, for example in architecture, inspection of fabrication halls, criminal scene investigation (CSI), and in the military.

Techniques for Distance Measurements

Some of the most important techniques used for laser distance meters are as follows:

Laser Radar

A laser radar is a device which uses one of the distance measurement techniques as described above, and scans the direction of the distance measurement in two dimensions. This allows the acquisition of an image, or more precisely a depth profile of some object, as required e.g. in robotics. For acquiring such depth profiles at a higher rate, there are sensor chips similar to CCDs (charge-coupled devices) with internal electronics to detect phase shifts, so that the distance for each pixel can be measured simultaneously. This allows for rapid three-dimensional imaging with very compact devices.

Compared with ultrasonic or radio and microwave frequency devices (radar), the main advantage of laser distance measurement techniques is that laser light has a much smaller wavelength, allowing one to send out a much more concentrated probe beam and thus to achieve a higher transverse spatial resolution. Another advantage that an optical bandpass filter makes it possible to very effectively remove noise influences at other optical frequencies.

Various Issues

As essentially all other measurement techniques using lasers, laser distance measurements can be affected by laser noise. Other noise-related issues can arise from detection noise, stray light, and speckle effects.

The targets can have very different reflection and scattering properties. Problems can arise for very low reflection or for specular reflections.

Note that range finding with lasers can raise serious laser safety issues, particularly when intense pulses from Q-switched lasers are used. The related hazards can be strongly reduced by applying eye-safe lasers.

Bibliography

[1]H. Kikuta et al., “Distance measurement by the wavelength shift of laser diode light”, Appl. Opt. 25 (17), 2976 (1986)
[2]G. Beheim and K. Fritsch, “Range finding using frequency-modulated laser diode”, Appl. Opt. 25 (9), 1439 (1986)
[3]T. Bosch et al., “The physical principles of wavelength-shift interferometric laser rangefinders”, J. Opt. 23, 117 (1992)
[4]C.-M. Wu et al., “Heterodyne interferometer with subatomic periodic nonlinearity”, Appl. Opt. 38 (19), 4089 (1999)
[5]M.-C. Amann et al., “Laser ranging: a critical review of usual techniques for distance measurement”, Opt. Eng. 40 (1), 10 (2001)
[6]S. Poujouly and B. Journet, “Laser range-finding by phase-shift measurement: moving toward smart systems”, K. G. Harding, J. W. V. Miller, and B. G. Batchlor, eds., Machine Vision and Three-Dimensional Imaging Systems for Inspection and Metrology, Proc. SPIE 4189, 152, SPIE (2001)
[7]T. R. Schibli et al., “Displacement metrology with sub-pm resolution in air based on a fs-comb wavelength synthesizer”, Opt. Express 14 (13), 5984 (2006)
[8]K. Joo et al., “Distance measurements by combined method based on a femtosecond pulse laser”, Opt. Express 16 (24), 19799 (2008)
[9]I. Coddington et al., “Rapid and precise absolute distance measurements at long range”, Nature Photon. 3, 351 (2009)
[10]G. Berkovic and E. Shafir, “Optical methods for distance and displacement measurements”, Adv. in Opt. and Photon. 4 (4), 441 (2012)

See also: triangulation, time-of-flight measurements, interferometers, phase shift method for distance measurements, laser safety, laser applications

How do you rate this article?

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent
Comments:

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you like our website, you may also want to get our newsletters!

cover of SPIE Field Guide cover of SPIE Field Guide cover of SPIE Field Guide

Dr. Paschotta, author of this encyclopedia, has also published three books in the SPIE Field Guide series:

- Field Guide to Lasers

- Field Guide to Laser Pulse Generation

- Field Guide to Optical Fiber Technology

You can order these books on the SPIE website – just click on one of the images.

arrow

RP Fiber Power – the versatile Fiber Optics Software

An Amazing Tool

RP Fiber Power software

This amazing tool is extremely helpful for the development of passive and active fiber devices.

ASE

Watch our quick video tour!

Single-mode and Multi­mode Fibers

fibers

Calculate mode properties such as

  • amplitude distributions (near field and far field)
  • effective mode area
  • effective index
  • group delay and chromatic dispersion

Also calculate fiber coupling efficiencies; simulate effects of bending, nonlinear self-focusing or gain guiding on beam propagation, higher-order soliton propagation, etc.

Arbitrary Index Profiles

A fiber's index profile may be more complicated than just a circle:

special fibers

Here, we "printed" some letters, translated this into an index profile and initial optical field, propagated the light over some distance and plotted the output field – all automated with a little script code.

Fiber Couplers, Double-clad Fibers, Multicore Fibers, …

fiber devices

Simulate pump absorption in double-clad fibers, study beam propagation in fiber couplers, light propagation in tapered fibers, analyze the impact of bending, cross-saturation effects in amplifiers, leaky modes, etc.

Fiber Amplifiers

fiber amplifier

For example, calculate

  • gain and saturation characteristics (for continuous or pulsed operation)
  • energy transfers in erbium-ytterbium-doped amplifier fibers
  • influence of quenching effects, amplified spontaneous emission etc.

in single amplifier stages or in multi-stage amplifier systems, with double-clad fibers, etc.

Fiber-optic Telecom Systems

eye diagram

For example,

  • analyze dispersive and nonlinear signal distortions
  • investigate the impact of amplifier noise
  • optimize nonlinear management and the placement of amplifiers

Find out in detail what is going on in such a system!

Fiber Lasers

fiber laser

For example, analyze and optimize the

  • power conversion efficiency
  • wavelength tuning range
  • Q switching dynamics
  • femtosecond pulse generation with mode locking

for lasers based on double-clad fiber, with linear or ring resonator, etc.

Ultrafast Fiber Lasers and Amplifiers

fiber laser

For example, study

  • pulse formation mechanisms
  • impact of nonlinearities and chromatic dispersion
  • parabolic pulse amplification
  • feedback sensitivity
  • supercontinuum generation

Apply any sequence of elements to your pulses!

… and even Bulk Devices

regenerative amplifier

For example, study

  • Q switching dynamics
  • mode-locking behavior
  • impact of nonlinearities and chromatic dispersion
  • influence of a saturable absorber
  • chirped-pulse amplification
  • regenerative amplification

RP Fiber Power is an extremely versatile tool!

Mode Solver

fiber modes

For example, calculate

  • amplitude and intensity profiles
  • effective mode areas
  • cut-off wavelengths
  • propagation constants
  • group velocities
  • chromatic dispersion

All this is calculated with high efficiency!

Beam Propagation

beam propagation

Propagate optical field with arbitrary wavefronts through fibers. These may be asymmetric, bent, tapered, exhibit random disturbances, etc.

See our demo video for numerical beam propagation.

Laser-active Ions

level scheme

Work with the standard gain model, or define your own level scheme!

Can include different ions, energy transfers, upconversion and quenching effects, complicated pumping schemes, etc.

Multiple Pump and Signal Waves, ASE

optical channels

Define multiple pump and signal waves and many ASE channels – each one with its own transverse intensity profile, loss coefficient etc.

The power calculations are highly efficient and reliable.

Simple Use and High Flexibility Combined

For simpler tasks, use convenient forms:

signal parameters

Script code is automatically generated and can then be modified by the user. A powerful script language gives you an unparalleled flexibility!

High-quality Documentation and Competent Support

The carefully prepared comprehensive documentation includes a PDF manual and an interactive online help system.

Competent technical support is provided: the developer himself will help you and make sure that any problem is solved!

Our support is like included technical consulting.

Boost your competence, efficiency and creativity!

  • Stop fishing in the dark! Develop a clear quantitative understanding of your devices.
  • Explore the effects of possible design changes on your desk.
  • That way, get most efficient in the lab.
  • Find optimized solutions efficiently, minimizing time to market.
  • Get new ideas by playing with your models.

Efficiency and success of
R & D are not a matter of chance.

See our detailed description with many case studies!

Contact us to get a quotation!

– Show all banners –

– Get your own banner! –