RP Photonics logo
RP Photonics
Encyclopedia
Consulting Software Encyclopedia Buyer's Guide

Short address: rpp-con.com

Dr. Paschotta, the founder of RP Photonics, supports your R & D with his deep expertise. Save time and money with efficient support!

Short address: rpp-soft.com

Powerful simulation software for fiber lasers and amplifiers, resonator design, pulse propagation and multilayer coating design.

Short address: rpp-enc.com

The famous Encyclopedia of Laser Physics and Technology provides a wealth of high-quality scientific and technical information.

Short address: rpp-bg.com

In the RP Photonics Buyer's Guide, you easily find suppliers for photo­nics products. As a supp­lier, you can profit from enhanced entries!

Learn on lasers and photonics every day!
VL logo part of the
Virtual
Library

Eye-safe Lasers

<<<  |  >>>  |  Feedback

Buyer's Guide

25 suppliers for eye-safe lasers are listed.

Your are not yet listed? Get your entry!

Ask RP Photonics for advice concerning which types of eye-safe lasers could be suitable for your application.

Definition: lasers emitting in a wavelength region with relatively low hazards for the human eye

German: augensichere Laser

Lasers with emission wavelengths longer than ≈ 1.4 μm are often called “eye-safe”, because light in that wavelength range is strongly absorbed in the eye's cornea and lens and therefore cannot reach the significantly more sensitive retina. This makes e.g. erbium lasers and erbium-doped fiber amplifiers used in 1.5-μm telecom systems or 2-μm thulium lasers far less dangerous than e.g. 1-μm lasers with similar output powers.

On the other hand, the absorption length of the cornea reaches very small values (well below 0.1 mm) at longer wavelengths, particularly around 3 μm and around 10 μm (near the wavelength of CO2 lasers). This means that optical pulses at such wavelengths are absorbed in a very thin layer, so that the damage threshold of the cornea is relatively low. Therefore, lasers emitting around 3 μm or 10 μm are less eye-safe than e.g. lasers emitting around 1.5 μm, even though they are “retina-safe”. While the outer surface of the cornea (the epithelium) can at least heal after damage, this is not the case for the inner part (the endothelium). Also, corneal injuries can be very painful.

Obviously, the quality “eye-safe” depends not only on the emission wavelength, but also on the power level and the optical intensity which can reach the eye. With sufficient power, such as is reached with a fiber amplifier or with a Q-switched laser, the eye can still be damaged. However, it can already be very helpful if at least weak parasitic reflections of some main beam are not dangerous for the eyes.

Note that the laser power alone (or the intensity at the laser output) is not sufficient to assess the possible intensity in the eye; that also depends on other factors such as the beam divergence and beam quality. Therefore, one cannot simply state a power or intensity limit for eye safety at a given wavelength.

See also: laser safety

Category: lasers

How do you rate this article?

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent
Comments:

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you like our website, you may also want to get our newsletters!

arrow

Have you seen the
RP Photonics Buyer's Guide?

It lists many hundreds of suppliers for photonics products, and is just one mouse click away from the extremely popular Encyclopedia of Laser Physics and Technology:

Our Buyer's Guide is what you need:

And surely you will remember where to find this useful resource again!

Suppliers: get your free entries, and enhanced visibility with paid entries.

Thin-film Optics Software

Analyze and optimize dichroic and dispersive mirrors, AR coatings, filters, thin-film polarizers, rugate filters, VECSELs etc. with RP Coating!

coating design

Free Fiber Optics Software!

RP Fiber Calculator software

RP Fiber Calculator – a convenient tool for calculations on optical fibers -- offered for free
let us celebrate the 10-year anniversary of RP Photonics!

Stay Up to Date with Newsletters

Obtain the Photonics Spotlight and the RP Photonics Software News as a newsletter! We spread interesting information, not just advertisements.

Laser Design Services

Fast and efficient laser development is possible with the competent design services of RP Photonics, based on extensive experience, deep scientific knowledge and advanced software.

Tailored Training Courses

Within one or two days, a tailored training course at your location can boost the competence of your team. An investment which can pay back very rapdily!