RP Photonics logo
RP Photonics
Encyclopedia
Consulting Software Encyclopedia Buyer's Guide

Short address: rpp-con.com

Dr. Paschotta, the founder of RP Photonics, supports your R & D with his deep expertise. Save time and money with efficient support!

Short address: rpp-soft.com

Powerful simulation software for fiber lasers and amplifiers, resonator design, pulse propagation and multilayer coating design.

Short address: rpp-enc.com

The famous Encyclopedia of Laser Physics and Technology provides a wealth of high-quality scientific and technical information.

Short address: rpp-bg.com

In the RP Photonics Buyer's Guide, you easily find suppliers for photo­nics products. As a supp­lier, you can profit from enhanced entries!

Learn on lasers and photonics every day!
VL logo part of the
Virtual
Library

Femtosecond Lasers

<<<  |  >>>  |  Feedback

Buyer's Guide

The ideal place to find suppliers for photonics products: high-quality information, simple and fast, respects your privacy!

53 suppliers for femtosecond lasers are listed.

Among them:

banner

Your are not yet listed? Get your entry!

Ask RP Photonics on any advice concerning the design of femtosecond lasers, or the selection of the most suitable laser type and model for some application.

Definition: lasers emitting pulses with durations between a few femtoseconds and hundreds of femtoseconds

German: Femtosekundenlaser

Categories: lasers, light pulses

How to cite the article

A femtosecond laser is a laser which emits optical pulses with a duration well below 1 ps (→ ultrashort pulses), i.e., in the domain of femtoseconds (1 fs = 10−15 s). It thus also belongs to the category of ultrafast lasers or ultrashort pulse lasers. The generation of such short pulses is nearly always achieved with the technique of passive mode locking.

Types of Femtosecond Lasers

Bulk Lasers

Passively mode-locked solid-state bulk lasers can emit high-quality ultrashort pulses with typical durations between 30 fs and 30 ps. Various diode-pumped lasers, e.g. based on neodymium-doped or ytterbium-doped gain media, operate in this regime, with typical average output powers between ≈ 100 mW and 1 W. Titanium–sapphire lasers with advanced dispersion compensation are even suitable for pulse durations below 10 fs, in extreme cases down to approximately 5 fs. The pulse repetition rate is in most cases between 50 MHz and 500 MHz, even though there are low repetition rate versions with a few megahertz for higher pulse energies, and also miniature lasers with tens of gigahertz.

Fiber Lasers

Various types of ultrafast fiber lasers, which are also in most cases passively mode-locked, typically offer pulse durations between 50 and 500 fs, repetition rates between 10 and 100 MHz, and average powers of a few milliwatts. Substantially higher average powers and pulse energies are possible, e.g. with stretched-pulse fiber lasers or with similariton lasers, or in combination with a fiber amplifier. All-fiber solutions can be fairly cost-effective in mass production, although the effort required for development of a product with high performance and reliable operation can be substantial due to various technical challenges.

Dye Lasers

Dye lasers dominated the field of ultrashort pulse generation before the advent of titanium–sapphire lasers. Their gain bandwidth allows for pulse durations of the order of 10 fs, and different laser dyes are suitable for emission at various wavelengths, often in the visible spectral range. Mainly due to the disadvantages associated with handling a laser dye, femtosecond dye lasers are no longer frequently used.

Semiconductor Lasers

Some mode-locked diode lasers can generate pulses with femtosecond durations. Directly at the laser output, the pulses durations are usually at least several hundred femtoseconds, but with external pulse compression, much shorter pulse durations can be achieved.

It is also possible to passively mode-lock vertical external-cavity surface-emitting lasers (VECSELs); these are interesting particularly because they can deliver a combination of short pulse durations, high pulse repetition rates, and sometimes high average output power, whereas they are not suitable for high pulse energies.

Other Types

More exotic types of femtosecond lasers are color center lasers and free electron lasers. The latter can be made to emit femtosecond pulses even in the form of X-rays.

Important Parameters of Femtosecond Lasers

The key performance figures of femtosecond lasers are the following:

There are, however, various additional aspects which can be important:

Apart from these aspects of the laser itself, the quality of the documentation material, such as product specifications, user manual, etc., can be of interest.

See also: mode-locked lasers, ultrafast lasers, mode-locked diode lasers, titanium–sapphire lasers, solid-state lasers, picosecond lasers, passive mode locking, mode locking, ultrashort pulses

How do you rate this article?

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent
Comments:

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you like our website, you may also want to get our newsletters!

arrow

RP Fiber Power – the versatile Fiber Optics Software

An Amazing Tool

RP Fiber Power software

This amazing tool is extremely helpful for the development of passive and active fiber devices.

ASE

Watch our quick video tour!

Single-mode and Multi­mode Fibers

fibers

Calculate mode properties such as

  • amplitude distributions (near field and far field)
  • effective mode area
  • effective index
  • group delay and chromatic dispersion

Also calculate fiber coupling efficiencies; simulate effects of bending, nonlinear self-focusing or gain guiding on beam propagation, higher-order soliton propagation, etc.

Arbitrary Index Profiles

A fiber's index profile may be more complicated than just a circle:

special fibers

Here, we "printed" some letters, translated this into an index profile and initial optical field, propagated the light over some distance and plotted the output field – all automated with a little script code.

Fiber Couplers, Double-clad Fibers, Multicore Fibers, …

fiber devices

Simulate pump absorption in double-clad fibers, study beam propagation in fiber couplers, light propagation in tapered fibers, analyze the impact of bending, cross-saturation effects in amplifiers, leaky modes, etc.

Fiber Amplifiers

fiber amplifier

For example, calculate

  • gain and saturation characteristics (for continuous or pulsed operation)
  • energy transfers in erbium-ytterbium-doped amplifier fibers
  • influence of quenching effects, amplified spontaneous emission etc.

in single amplifier stages or in multi-stage amplifier systems, with double-clad fibers, etc.

Fiber-optic Telecom Systems

eye diagram

For example,

  • analyze dispersive and nonlinear signal distortions
  • investigate the impact of amplifier noise
  • optimize nonlinear management and the placement of amplifiers

Find out in detail what is going on in such a system!

Fiber Lasers

fiber laser

For example, analyze and optimize the

  • power conversion efficiency
  • wavelength tuning range
  • Q switching dynamics
  • femtosecond pulse generation with mode locking

for lasers based on double-clad fiber, with linear or ring resonator, etc.

Ultrafast Fiber Lasers and Amplifiers

fiber laser

For example, study

  • pulse formation mechanisms
  • impact of nonlinearities and chromatic dispersion
  • parabolic pulse amplification
  • feedback sensitivity
  • supercontinuum generation

Apply any sequence of elements to your pulses!

… and even Bulk Devices

regenerative amplifier

For example, study

  • Q switching dynamics
  • mode-locking behavior
  • impact of nonlinearities and chromatic dispersion
  • influence of a saturable absorber
  • chirped-pulse amplification
  • regenerative amplification

RP Fiber Power is an extremely versatile tool!

Mode Solver

fiber modes

For example, calculate

  • amplitude and intensity profiles
  • effective mode areas
  • cut-off wavelengths
  • propagation constants
  • group velocities
  • chromatic dispersion

All this is calculated with high efficiency!

Beam Propagation

beam propagation

Propagate optical field with arbitrary wavefronts through fibers. These may be asymmetric, bent, tapered, exhibit random disturbances, etc.

See our demo video for numerical beam propagation.

Laser-active Ions

level scheme

Work with the standard gain model, or define your own level scheme!

Can include different ions, energy transfers, upconversion and quenching effects, complicated pumping schemes, etc.

Multiple Pump and Signal Waves, ASE

optical channels

Define multiple pump and signal waves and many ASE channels – each one with its own transverse intensity profile, loss coefficient etc.

The power calculations are highly efficient and reliable.

Simple Use and High Flexibility Combined

For simpler tasks, use convenient forms:

signal parameters

Script code is automatically generated and can then be modified by the user. A powerful script language gives you an unparalleled flexibility!

High-quality Documentation and Competent Support

The carefully prepared comprehensive documentation includes a PDF manual and an interactive online help system.

Competent technical support is provided: the developer himself will help you and make sure that any problem is solved!

Our support is like included technical consulting.

Boost your competence, efficiency and creativity!

  • Stop fishing in the dark! Develop a clear quantitative understanding of your devices.
  • Explore the effects of possible design changes on your desk.
  • That way, get most efficient in the lab.
  • Find optimized solutions efficiently, minimizing time to market.
  • Get new ideas by playing with your models.

Efficiency and success of
R & D are not a matter of chance.

See our detailed description with many case studies!

Contact us to get a quotation!

– Show all banners –

– Get your own banner! –