RP Photonics logo
RP Photonics
Consulting Software Encyclopedia Buyer's Guide

Short address: rpp-con.com

Dr. Paschotta, the founder of RP Photonics, supports your R & D with his deep expertise. Save time and money with efficient support!

Short address: rpp-soft.com

Powerful simulation software for fiber lasers and amplifiers, resonator design, pulse propagation and multilayer coating design.

Short address: rpp-enc.com

The famous Encyclopedia of Laser Physics and Technology provides a wealth of high-quality scientific and technical information.

Short address: rpp-bg.com

In the RP Photonics Buyer's Guide, you easily find suppliers for photo­nics products. As a supp­lier, you can profit from enhanced entries!

Learn on lasers and photonics every day!
VL logo part of the

Group Velocity

<<<  |  >>>  |  Feedback

Buyer's Guide

Use the RP Photonics Buyer's Guide to find suppliers for photonics products! You will hardly find a more convenient resource.

Definition: the velocity with which the envelope of a weak narrow-band optical pulse propagates in a medium

German: Gruppengeschwindigkeit

Categories: general optics, light pulses

How to cite the article; suggest additional literature

The group velocity of light in a medium is defined as the inverse of the derivative of the wavenumber with respect to angular frequency:

group velocity

where n(ω) is the refractive index and ng is called the group index. The wavenumber k can be considered as the change in spectral phase per unit length.

The group velocity is the velocity with which the envelope of a pulse propagates in a medium, assuming a long pulse with narrow bandwidth (so that higher-order chromatic dispersion is not relevant) and the absence of nonlinear effects (i.e., low enough optical intensities).

Figure 1 illustrates how the different frequency components combine to form a pulse, and how the different velocities arise. The gray lines indicate the wavefronts for some of the frequency components of the pulse (spatially offset for clarity). Due to chromatic dispersion, the higher-frequency components have somewhat lower phase velocities. The pulse maximum forms where the wavefronts coincide (constructive interference), and it propagates with the group velocity (which in this example is 80% of the medium phase velocity).

illustration of group velocity

Figure 1: Propagation of a light pulse in a dispersive medium. Note that the phase fronts of different frequency components propagate with different velocities, and the pulse propagates with the group velocity, which is lower than all the phase velocities.

In the shown example, there is a reduced group velocity, but no temporal pulse broadening, since the group velocity is constant over the whole pulse spectrum, i.e., there is no group velocity dispersion.

Due to chromatic dispersion, the group velocity in a medium is in general different from the phase velocity (typically smaller than the latter), and it is frequency-dependent; this effect is called group velocity dispersion. The difference between group velocity and phase velocity also changes the carrier–envelope offset of the pulse.

In analogy with the refractive index, the group index (see the equation above) can be defined as the ratio of the group velocity in vacuum to the group velocity in the medium.

Under certain circumstances, the group velocity can be higher than the vacuum velocity of light. However, this does not allow for superluminal transmission of information, which would amount to a violation of causality. There are also cases with a strongly reduced group velocity dispersion (usually in the vicinity of some narrow resonance) (slow light, a hot topic of current research).

Group Velocity in a Waveguide

For light propagating in a waveguide such as an optical fiber, the group velocity can be calculated by replacing the wavenumber k with β (the imaginary part of the propagation constant) (or replacing the refractive index n with the effective refractive index) in the equation given above. The deviation of that result from the group velocity in a homogeneous medium can be interpreted as the influence of waveguide dispersion.

Group Velocity in Nonlinear Propagation

In the literature, a certain group velocity is sometimes assigned even to a broadband pulse with complicated shape, or to a soliton pulse where an optical nonlinearity has an important influence (see e.g. Ref. [1]). However, this use of the term group delay is questionable, because it effectively redefines the term, giving it a different meaning, and can thus be misleading. Note that some frequently used relations involving the group velocity (as discussed above) are not valid in the nonlinear regime.


[1]H. A. Haus and E. P. Ippen, “Group velocity of solitons”, Opt. Lett. 26 (21), 1654 (2001)

(Suggest additional literature!)

See also: group velocity dispersion, phase velocity, group delay, group velocity mismatch, carrier–envelope offset, velocity of light

How do you rate this article?

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you like our website, you may also want to get our newsletters!


RP Fiber Power – the versatile Fiber Optics Software

An Amazing Tool

RP Fiber Power software

This amazing tool is extremely helpful for the development of passive and active fiber devices.


Watch our quick video tour!

Single-mode and Multi­mode Fibers


Calculate mode properties such as

  • amplitude distributions (near field and far field)
  • effective mode area
  • effective index
  • group delay and chromatic dispersion

Also calculate fiber coupling efficiencies; simulate effects of bending, nonlinear self-focusing or gain guiding on beam propagation, higher-order soliton propagation, etc.

Arbitrary Index Profiles

A fiber's index profile may be more complicated than just a circle:

special fibers

Here, we "printed" some letters, translated this into an index profile and initial optical field, propagated the light over some distance and plotted the output field – all automated with a little script code.

Fiber Couplers, Double-clad Fibers, Multicore Fibers, …

fiber devices

Simulate pump absorption in double-clad fibers, study beam propagation in fiber couplers, light propagation in tapered fibers, analyze the impact of bending, cross-saturation effects in amplifiers, leaky modes, etc.

Fiber Amplifiers

fiber amplifier

For example, calculate

  • gain and saturation characteristics (for continuous or pulsed operation)
  • energy transfers in erbium-ytterbium-doped amplifier fibers
  • influence of quenching effects, amplified spontaneous emission etc.

in single amplifier stages or in multi-stage amplifier systems, with double-clad fibers, etc.

Fiber-optic Telecom Systems

eye diagram

For example,

  • analyze dispersive and nonlinear signal distortions
  • investigate the impact of amplifier noise
  • optimize nonlinear management and the placement of amplifiers

Find out in detail what is going on in such a system!

Fiber Lasers

fiber laser

For example, analyze and optimize the

  • power conversion efficiency
  • wavelength tuning range
  • Q switching dynamics
  • femtosecond pulse generation with mode locking

for lasers based on double-clad fiber, with linear or ring resonator, etc.

Ultrafast Fiber Lasers and Amplifiers

fiber laser

For example, study

  • pulse formation mechanisms
  • impact of nonlinearities and chromatic dispersion
  • parabolic pulse amplification
  • feedback sensitivity
  • supercontinuum generation

Apply any sequence of elements to your pulses!

… and even Bulk Devices

regenerative amplifier

For example, study

  • Q switching dynamics
  • mode-locking behavior
  • impact of nonlinearities and chromatic dispersion
  • influence of a saturable absorber
  • chirped-pulse amplification
  • regenerative amplification

RP Fiber Power is an extremely versatile tool!

Mode Solver

fiber modes

For example, calculate

  • amplitude and intensity profiles
  • effective mode areas
  • cut-off wavelengths
  • propagation constants
  • group velocities
  • chromatic dispersion

All this is calculated with high efficiency!

Beam Propagation

beam propagation

Propagate optical field with arbitrary wavefronts through fibers. These may be asymmetric, bent, tapered, exhibit random disturbances, etc.

See our demo video for numerical beam propagation.

Laser-active Ions

level scheme

Work with the standard gain model, or define your own level scheme!

Can include different ions, energy transfers, upconversion and quenching effects, complicated pumping schemes, etc.

Multiple Pump and Signal Waves, ASE

optical channels

Define multiple pump and signal waves and many ASE channels – each one with its own transverse intensity profile, loss coefficient etc.

The power calculations are highly efficient and reliable.

Simple Use and High Flexibility Combined

For simpler tasks, use convenient forms:

signal parameters

Script code is automatically generated and can then be modified by the user. A powerful script language gives you an unparalleled flexibility!

High-quality Documentation and Competent Support

The carefully prepared comprehensive documentation includes a PDF manual and an interactive online help system.

Competent technical support is provided: the developer himself will help you and make sure that any problem is solved!

Our support is like included technical consulting.

Boost your competence, efficiency and creativity!

  • Stop fishing in the dark! Develop a clear quantitative understanding of your devices.
  • Explore the effects of possible design changes on your desk.
  • That way, get most efficient in the lab.
  • Find optimized solutions efficiently, minimizing time to market.
  • Get new ideas by playing with your models.

Efficiency and success of
R & D are not a matter of chance.

See our detailed description with many case studies!

Contact us to get a quotation!

– Show all banners –

– Get your own banner! –