RP Photonics logo
RP Photonics
Consulting Software Encyclopedia Buyer's Guide

Short address: rpp-con.com

Dr. Paschotta, the founder of RP Photonics, supports your R & D with his deep expertise. Save time and money with efficient support!

Short address: rpp-soft.com

Powerful simulation software for fiber lasers and amplifiers, resonator design, pulse propagation and multilayer coating design.

Short address: rpp-enc.com

The famous Encyclopedia of Laser Physics and Technology provides a wealth of high-quality scientific and technical information.

Short address: rpp-bg.com

In the RP Photonics Buyer's Guide, you easily find suppliers for photo­nics products. As a supp­lier, you can profit from enhanced entries!

Learn on lasers and photonics every day!
VL logo part of the

Intracavity Laser Absorption Spectroscopy

<<<  |  >>>  |  Feedback

Buyer's Guide

Use the RP Photonics Buyer's Guide to find suppliers for photonics products! You will hardly find a more convenient resource.

Ask RP Photonics for advice on laser applications and suitable laser sources for those.

Acronym: ICLAS or ICAS

Definition: a method of laser spectroscopy, based on the evolution of the optical spectrum of intracavity radiation under the influence of narrowband absorption features

German: Intracavity-Laserabsorptionsspektroskopie

Categories: lasers, methods

How to cite the article; suggest additional literature

Intracavity laser absorption spectroscopy is a technique for highly sensitive spectroscopic measurements. The basic principle is as follows. The substance to be evaluated (e.g. some gas sample) is placed within the resonator of a laser, which is preferably based on a gain medium with broad gain bandwidth and a resonator with low losses. When the laser is turned on, it starts to oscillate on many resonator modes simultaneously; only after many resonator round trips will the optical spectrum of the generated light strongly concentrate to the spectral region with highest gain. During this evolution, weak absorption features of the tested sample can imprint signatures on the spectrum, because they can influence the spectrum during many round trips. A measurement of the spectrum is done some time after switching on the laser; this time should be long enough to allow for strong spectral features to develop, but also short enough to prevent too strong narrowing of the spectrum caused by the finite gain bandwidth.

With a carefully optimized setup, intracavity absorption spectroscopy allows for extremely long effective path lengths of tens of thousands of kilometers, and at the same time very high spectral resolution. Suitable laser gain media for the spectroscopy of gases include neodymium-doped fibers and bulk glasses, titanium-doped sapphire, laser dyes, color center crystals, laser diodes, and vertical external cavity surface-emitting lasers. Important issues are to have a broad gain bandwidth, to minimize resonator losses, and to avoid any parasitic reflections within the laser resonator. A review paper [6] explains in detail many technical issues and variations of the basic technique.


[1]L. A. Pakhomycheva et al., “Line structure of generation spectra of lasers with inhomogeneous broadening of the amplification line”, JETP Lett. 12, 43 (1970)
[2]H. J. Kimble, “Calculated enhancement for intracavity spectroscopy with single-mode laser”, IEEE J. Quantum Electron. QE-16 (4), 455 (1980)
 [3]R. Bohm et al., “Intracavity absorption spectroscopy with Nd3+-doped fiber laser”, Opt. Lett. 18 (22), 1955 (1993)
[4]K. J. Boller and T. Schroeder, “Demonstration of broadband intracavity spectroscopy in a pulsed optical parametric oscillator of beta-barium borate”, J. Opt. Soc. Am. B 10 (9), 1778 (1993)
[5]A. Kachanov et al., “Intracavity laser spectroscopy with vibronic solid-state lasers: I. Spectro-temporal transient behaviour of a Ti:sapphire laser”, J. Opt. Soc. Am. B 11 (12), 2412 (1994)
[6]V. M. Baev, “Laser intracavity absorption spectroscopy”, Appl. Phys. B 69, 171 (1999)
[7]A. Garnache et al., “High-sensitivity intracavity laser absorption spectroscopy with vertical-external-cavity surface-emitting semiconductor lasers”, Opt. Lett. 24 (12), 826 (1999)
[8]J. Cheng et al., “Infrared intracavity laser absorption spectroscopy with a continuous-scan Fourier-transform interferometer”, Appl. Opt. 39 (13), 2221 (2000)

(Suggest additional literature!)

See also: spectroscopy, lasers, laser resonators, gain bandwidth

How do you rate this article?

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you like our website, you may also want to get our newsletters!


– Show all banners –

– Get your own banner! –