RP Photonics logo
RP Photonics
Encyclopedia
Consulting Software Encyclopedia Buyer's Guide

Short address: rpp-con.com

Dr. Paschotta, the founder of RP Photonics, supports your R & D with his deep expertise. Save time and money with efficient support!

Short address: rpp-soft.com

Powerful simulation software for fiber lasers and amplifiers, resonator design, pulse propagation and multilayer coating design.

Short address: rpp-enc.com

The famous Encyclopedia of Laser Physics and Technology provides a wealth of high-quality scientific and technical information.

Short address: rpp-bg.com

In the RP Photonics Buyer's Guide, you easily find suppliers for photo­nics products. As a supp­lier, you can profit from enhanced entries!

Learn on lasers and photonics every day!
VL logo part of the
Virtual
Library

Kerr Effect

<<<  |  >>>  |  Feedback

Buyer's Guide

Use the RP Photonics Buyer's Guide to find suppliers for photonics products! You will hardly find a more convenient resource.

Ask RP Photonics for advice on consequences of the Kerr effect in various situations, e.g. within laser cavities.

Definition: a nonlinear interaction of light in a medium with an instantaneous response, related to the nonlinear electronic polarization

German: Kerr-effekt

Categories: nonlinear optics, physical foundations

How to cite the article

The Kerr effect is a nonlinear optical effect occurring when intense light propagates in crystals and glasses, but also in other media such as gases. Its physical origin is a nonlinear polarization generated in the medium, which itself modifies the propagation properties of the light. The Kerr effect is the effect of an instantaneously occurring nonlinear response, which can be described as modifying the refractive index. In particular, the refractive index for the high intensity light beam itself is modified according to

index change via SPM

with the nonlinear index n2 and the optical intensity I. The n2 value of a medium can be measured e.g. with the z-scan technique. Note that in addition to the Kerr effect (a purely electronic nonlinearity), electrostriction can significantly contribute to the value of the nonlinear index [3, 4]. The electric field of light causes density variations (acoustic waves) which themselves influence the refractive index via the photoelastic effect. That mechanism, however, occurs on a much longer time scale and is thus relevant only for relatively slow power modulations, but not for ultrashort pulses.

Fused silica, as used e.g. for silica fibers, has a nonlinear index of ≈ 3 × 10−16 cm2/W. For soft glasses and particularly for semiconductors, it can be much higher, because it depends strongly on the bandgap energy. The nonlinearity is also often negative for photon energies above roughly 70% of the bandgap energy (self-defocusing nonlinearity).

The time- and frequency-dependent refractive index change leads to self-phase modulation and Kerr lensing, for different overlapping light beams also to cross-phase modulation. Note that the effective refractive index increase caused by some intense beam for other beams is twice as large as that according to the equation shown above, assuming that both beams are in the same polarization state.

The description of the Kerr effect via an intensity-dependent refractive index is actually based on a certain approximation, valid for light with a small optical bandwidth. For very short and broadband pulses, a deviation from this simple behavior can be observed, which is called self-steepening. It reduces the velocity with which the peak of the pulse propagates (i.e. it reduces the group velocity) and thus leads to an increasing slope of the trailing part of the pulse. This effect is relevant e.g. for supercontinuum generation. Furthermore, the strength of the Kerr effect is known to saturate at very high optical intensities.

At extremely high optical intensities, there may not be a further increase of refractive index in proportion to the intensity, but a saturation and even substantial decrease of refractive index [5]. This can be understood as an effect of multiphoton ionization, leading to induced losses, which are related to additional phase changes via Kramers–Kronig relations [7, 8].

A nonlinear polarization with delayed (non-instantaneous) response cannot be simply described as a modification of the refractive index. Its effect is called Raman scattering, and is not considered to be part of the Kerr effect.

Bibliography

[1]R. H. Stolen and A. Ashkin, “Optical Kerr effect in glass waveguide”, Appl. Phys. Lett. 22, 294 (1973)
[2]M. Sheik-Bahae et al., “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption”, Phys. Rev. Lett. 65 (1), 96 (1990)
[3]E. L. Buckland and R. W. Boyd, “Electrostrictive contribution to the intensity-dependent refractive index of optical fibers”, Opt. Lett. 21 (15), 1117 (1996)
[4]E. L. Buckland and R. W. Boyd, “Measurement of the frequency response of the electrostrictive nonlinearity in optical fibers”, Opt. Lett. 22 (10), 676 (1997)
[5]V. Loriot et al., “Measurement of high order Kerr refractive index of major air components”, Opt. Express 17 (16), 13429 (2009)
[6]D. N. Schimpf et al., “Circular versus linear polarization in laser-amplifiers with Kerr-nonlinearity”, Opt. Express 17 (21), 18774 (2009)
[7]C. Brée, A. Demircan and G. Steinmeyer, “Saturation of the all-optical Kerr effect”, Phys. Rev. Lett. 106 (18), 183902 (2011)
[8]B. Borchers et al., “Saturation of the all-optical Kerr effect in solids”, Opt. Lett. 37 (9), 1541 (2012)
[9]G. P. Agrawal, Nonlinear Fiber Optics, 4th edn., Academic Press, New York (2007)

See also: Kerr lens, self-phase modulation, cross-phase modulation, nonlinearities, nonlinear index, group velocity, Raman scattering

How do you rate this article?

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent
Comments:

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you like our website, you may also want to get our newsletters!

arrow

You have found the Best Place for Your Banner – Here!

Make your

well known with an extra-wide
skyscraper banner
which is displayed here (with a given probability per page view).

Aspect 1: Huge Traffic

This website is immensely popular – see the detailed statistical data.

For example, your banner gets ≈13'000 views per month if you choose 10% probability per page view.

Aspect 2: Ideal Audience

The users of this resource are

  • industry people
  • researchers

working on laser technology and related areas of photonics – exactly those you want to inform on your photonics products.

Aspect 3: Precise Targeting

You can even make the display probability dependent on certain topics – e.g., increase it for pages on lasers!

With our convenient selection tool, this is easy to do.

Which other photonics website can offer that?

Aspect 4: High-quality Environment

Get your banner placed on pages with high-quality content, rather than on pages which are crowed with ads! Our pages give visibility just for you!

Aspect 5: Transparency

On this website, you know exactly on what kind of pages your banner is placed: mostly encyclopedia articles and buyer's guide pages – not some undefined bunch of materials.

We also publish clear statistical data.

Aspect 6: Convenience

Our convenient tool makes it easy for you to define the placement of your banner and to find out the cost.

Also, we deliver a diligent and flexible service, helping you to save time.

Aspect 7: Competitive Pricing

Compare our prices with those at other places: we deliver better value for money!

Visit our page on advertising banners to get more details!

– Show all banners –

– Get your own banner! –