RP Photonics logo
RP Photonics
Consulting Software Encyclopedia Buyer's Guide

Short address: rpp-con.com

Dr. Paschotta, the founder of RP Photonics, supports your R & D with his deep expertise. Save time and money with efficient support!

Short address: rpp-soft.com

Powerful simulation software for fiber lasers and amplifiers, resonator design, pulse propagation and multilayer coating design.

Short address: rpp-enc.com

The famous Encyclopedia of Laser Physics and Technology provides a wealth of high-quality scientific and technical information.

Short address: rpp-bg.com

In the RP Photonics Buyer's Guide, you easily find suppliers for photo­nics products. As a supp­lier, you can profit from enhanced entries!

Learn on lasers and photonics every day!
VL logo part of the

Laser Applications

<<<  |  >>>  |  Feedback

Buyer's Guide

The ideal place to find suppliers for photonics products: high-quality information, simple and fast, respects your privacy!

19 suppliers for laser applications are listed.

Your are not yet listed? Get your entry!

If you are using lasers in any way, ask RP Photonics for advice concerning the best suitable laser sources, or for help in developing a laser.

Definition: applications involving laser devices

German: Laseranwendungen

Category: lasers

How to cite the article; suggest additional literature

Lasers are sources of light with very special properties, as discussed in the article on laser light. For that reason, there is a great variety of laser applications, leading to a total of over 8 billion USD of global laser sales (as of 2013). The following sections give a brief overview.


Lasers are widely used in manufacturing, e.g. for cutting, drilling, welding, cladding, soldering (brazing), hardening, ablating, surface treatment, marking, engraving, micromachining, pulsed laser deposition, lithography, alignment, etc. In most cases, relatively high optical intensities are applied to a small spot, leading to intense heating, possibly evaporation and plasma generation. Essential aspects are the high spatial coherence of laser light, allowing for strong focusing, and often also the potential for generating intense pulses.

Laser processing methods have many advantages, compared with mechanical approaches. They allow the fabrication of very fine structures with high quality, avoiding mechanical stress such as caused by mechanical drills and blades. A laser beam with high beam quality can be used to drill very fine and deep holes, e.g. for injection nozzles. A high processing speed is often achieved, e.g. in the fabrication of filter sieves. Further, the lifetime limitation of mechanical tools is removed. It can also be advantageous to process materials without touching them.

The requirements on optical power and beam quality depend very much on the application and the involved materials. For example, laser marking on plastics can be done with fairly low power levels, whereas cutting, welding or drilling on metals requires much more – often multiple kilowatts. Soldering applications may require a high power but only a moderate beam quality, whereas particularly remote welding (i.e., welding with a substantial distance between laser head and welded parts) depends on a high beam quality.

Laser-aided manufacturing often allows one to produce the essentially same parts with higher quality and/or lower cost. Also, it is often possible to realize entirely new part designs or the use of new materials. For example, automobile parts are increasingly made of light materials such as aluminum, which require tentatively more laser joining operations. Weight reductions are possible not only by the user of lighter materials, but also e.g. by producing them with shorter flanges due to higher precision than is feasible with conventional production methods.

Medical Applications

There is a wide range of medical applications. Often these relate to the outer parts of the human body, which are easily reached with light; examples are eye surgery and vision correction (LASIK), dentistry, dermatology (e.g. photodynamic therapy of cancer), and various kinds of cosmetic treatment such as tattoo removal and hair removal.

Lasers are also used for surgery (e.g. of the prostate), exploiting the possibility to cut tissues while causing minimal bleeding. Some operations can be done with endoscopic means; an endoscope may contain an optical fiber for delivering light light to the operation scene and another fiber for imaging, apart from additional channels for mechanical instruments.

Very different types of lasers are required for medical applications, depending on the optical wavelength, output power, pulse format, etc. In many cases, the laser wavelength is chosen such that certain substances (e.g. pigments in tattoos or caries in teeth) absorb light more strongly than surrounding tissue, so that they can be more precisely targeted.

Medical lasers are not always used for therapy. Some of them rather assist the diagnosis, e.g. via methods of ocular imaging, laser microscopy or spectroscopy (see below).


Lasers are widely used in optical metrology, e.g. for extremely precise position measurements and optical surface profiling with interferometers, for long-distance range finding and navigation.

Laser scanners are based on collimated laser beams, which can read e.g. bar codes or other graphics over some distance. It is also possible to scan three-dimensional objects, e.g. in the context of crime scene investigation (CSI).

Optical sampling is a technique applied for the characterization of fast electronic microcircuits, microwave photonics, terahertz science, etc.

Lasers also allow for extremely precise time measurements and are therefore essential component of optical clocks which are beginning to outperform the currently used cesium atomic clocks.

Fiber-optic sensors, often probed with laser light, allow for the distributed measurement of temperature, stress, and other quantities e.g. in oil pipelines and wings of airplanes.

Data Storage

Optical data storage e.g. in compact disks (CDs), DVDs, Blu-ray Discs and magneto-optical disks, nearly always relies on a laser source, which has a high spatial coherence and can thus be used to address very tiny spots in the recording medium, allowing a very high density data storage. Another case is holography, where the temporal coherence can also be important.


Optical fiber communication, extensively used particularly for long-distance optical data transmission, mostly relies on laser light in optical glass fibers. Free-space optical communications, e.g. for inter-satellite communications, is based on higher-power lasers, generating collimated laser beams which propagate over large distances with small beam divergence.


Laser projection displays containing RGB sources can be used for cinemas, home videos, flight simulators, etc., and are often superior to other displays concerning possible screen dimensions, resolution and color saturation. However, further reductions in manufacturing costs will be essential for deep market penetration.


Laser spectroscopy is used in many different forms and in a wide range of applications. For example, atmospheric physics and pollution monitoring profits from trace gas sensing with differential absorption LIDAR technology. Solid materials can be analyzed with laser-induced breakdown spectroscopy. Laser spectroscopy also plays a role in medicine (e.g. cancer detection), biology, and various types of fundamental research, partly related to metrology (see above).


Laser microscopes and setups for optical coherence tomography (OCT) provide images of, e.g., biological samples with very high resolution, often in three dimensions. It is also possible to realize functional imaging.

Various Scientific Applications

Laser cooling makes it possible to bring clouds of atoms or ions to extremely low temperatures. This has applications in fundamental research and also for industrial purposes.

Particularly in biological and medical research, optical tweezers can be used for trapping and manipulating small particles, such as bacteria or parts of living cells.

Laser guide stars are used in astronomical observatories in combination with adaptive optics for atmospheric correction. They allow substantially increased image resolution even in cases where a sufficiently close-by natural guide star is not available.

Energy Technology

In the future, high-power laser systems might play a role in electricity generation. Laser-induced nuclear fusion is investigated as a alternative to other types of fusion reactors. High-power lasers can also be used for isotope separation.

Military Applications

There are a variety of military laser applications. In relatively few cases, lasers are used as weapons; the “laser sword” has become popular in movies, but not in practice. Some high-power lasers are currently developed for potential use as directed energy weapons on the battle field, or for destroying missiles, projectiles and mines.

In other cases, lasers function as target designators or laser sights (essentially laser pointers emitting visible or invisible laser beams), or as irritating or blinding (normally not directly destroying) countermeasures e.g. against heat-seeking anti-aircraft missiles. It is also possible to blind soldiers temporarily or permanently with laser beams, although the latter is forbidden by rules of war.

There are also many laser applications which are not specific for military use, e.g. in areas such as range finding, LIDAR, and optical communications.

See also: lasers, laser light, photonics

How do you rate this article?

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media:


RP Fiber Power – the versatile Fiber Optics Software

An Amazing Tool

RP Fiber Power software

This amazing tool is extremely helpful for the development of passive and active fiber devices.


Watch our quick video tour!

Single-mode and Multi­mode Fibers


Calculate mode properties such as

  • amplitude distributions (near field and far field)
  • effective mode area
  • effective index
  • group delay and chromatic dispersion

Also calculate fiber coupling efficiencies; simulate effects of bending, nonlinear self-focusing or gain guiding on beam propagation, higher-order soliton propagation, etc.

Arbitrary Index Profiles

A fiber's index profile may be more complicated than just a circle:

special fibers

Here, we "printed" some letters, translated this into an index profile and initial optical field, propagated the light over some distance and plotted the output field – all automated with a little script code.

Fiber Couplers, Double-clad Fibers, Multicore Fibers, …

fiber devices

Simulate pump absorption in double-clad fibers, study beam propagation in fiber couplers, light propagation in tapered fibers, analyze the impact of bending, cross-saturation effects in amplifiers, leaky modes, etc.

Fiber Amplifiers

fiber amplifier

For example, calculate

  • gain and saturation characteristics (for continuous or pulsed operation)
  • energy transfers in erbium-ytterbium-doped amplifier fibers
  • influence of quenching effects, amplified spontaneous emission etc.

in single amplifier stages or in multi-stage amplifier systems, with double-clad fibers, etc.

Fiber-optic Telecom Systems

eye diagram

For example,

  • analyze dispersive and nonlinear signal distortions
  • investigate the impact of amplifier noise
  • optimize nonlinear management and the placement of amplifiers

Find out in detail what is going on in such a system!

Fiber Lasers

fiber laser

For example, analyze and optimize the

  • power conversion efficiency
  • wavelength tuning range
  • Q switching dynamics
  • femtosecond pulse generation with mode locking

for lasers based on double-clad fiber, with linear or ring resonator, etc.

Ultrafast Fiber Lasers and Amplifiers

fiber laser

For example, study

  • pulse formation mechanisms
  • impact of nonlinearities and chromatic dispersion
  • parabolic pulse amplification
  • feedback sensitivity
  • supercontinuum generation

Apply any sequence of elements to your pulses!

… and even Bulk Devices

regenerative amplifier

For example, study

  • Q switching dynamics
  • mode-locking behavior
  • impact of nonlinearities and chromatic dispersion
  • influence of a saturable absorber
  • chirped-pulse amplification
  • regenerative amplification

RP Fiber Power is an extremely versatile tool!

Mode Solver

fiber modes

For example, calculate

  • amplitude and intensity profiles
  • effective mode areas
  • cut-off wavelengths
  • propagation constants
  • group velocities
  • chromatic dispersion

All this is calculated with high efficiency!

Beam Propagation

beam propagation

Propagate optical field with arbitrary wavefronts through fibers. These may be asymmetric, bent, tapered, exhibit random disturbances, etc.

See our demo video for numerical beam propagation.

Laser-active Ions

level scheme

Work with the standard gain model, or define your own level scheme!

Can include different ions, energy transfers, upconversion and quenching effects, complicated pumping schemes, etc.

Multiple Pump and Signal Waves, ASE

optical channels

Define multiple pump and signal waves and many ASE channels – each one with its own transverse intensity profile, loss coefficient etc.

The power calculations are highly efficient and reliable.

Simple Use and High Flexibility Combined

For simpler tasks, use convenient forms:

signal parameters

Script code is automatically generated and can then be modified by the user. A powerful script language gives you an unparalleled flexibility!

High-quality Documentation and Competent Support

The carefully prepared comprehensive documentation includes a PDF manual and an interactive online help system.

Competent technical support is provided: the developer himself will help you and make sure that any problem is solved!

Our support is like included technical consulting.

Boost your competence, efficiency and creativity!

  • Stop fishing in the dark! Develop a clear quantitative understanding of your devices.
  • Explore the effects of possible design changes on your desk.
  • That way, get most efficient in the lab.
  • Find optimized solutions efficiently, minimizing time to market.
  • Get new ideas by playing with your models.

Efficiency and success of
R & D are not a matter of chance.

See our detailed description with many case studies!

Contact us to get a quotation!

– Show all banners –

– Get your own banner! –