RP Photonics logo
RP Photonics
Consulting Software Encyclopedia Buyer's Guide

Short address: rpp-con.com

Dr. Paschotta, the founder of RP Photonics, supports your R & D with his deep expertise. Save time and money with efficient support!

Short address: rpp-soft.com

Powerful simulation software for fiber lasers and amplifiers, resonator design, pulse propagation and multilayer coating design.

Short address: rpp-enc.com

The famous Encyclopedia of Laser Physics and Technology provides a wealth of high-quality scientific and technical information.

Short address: rpp-bg.com

In the RP Photonics Buyer's Guide, you easily find suppliers for photo­nics products. As a supp­lier, you can profit from enhanced entries!

Learn on lasers and photonics every day!
VL logo part of the

Laser Beams

<<<  |  >>>  |  Feedback

Buyer's Guide

Use the RP Photonics Buyer's Guide to find suppliers for photonics products! You will hardly find a more convenient resource.

Definition: light beams propagating dominantly in one direction

German: Laserstrahlen

Categories: general optics, lasers

How to cite the article

In most cases, a laser emits light in the form of a laser beam. This means that the light dominantly propagates in a certain direction, typically with most of the optical power concentrated to a small area of the order of a square millimeter.

Laser beams are often close to Gaussian beams, where the transverse profile of the optical intensity of the beam can be described with a Gaussian function, the width of which varies along the propagation direction. This variation of beam size can be very small for beams with large width or very fast for tightly focused beams.

Gaussian beam

Figure 1: Snapshot of the electric field distribution around the focus of a Gaussian beam. In this example, the beam radius is only slightly larger than the wavelength, and the beam divergence is strong.

Generally, laser beams exhibit a high degree of spatial coherence, which is related to a high beam quality. As a result, such beams exhibit good focusability and the potential to form collimated beams with very low beam divergence.

Laser beams often have a small optical bandwidth, so that the temporal coherence is also high. An often unwanted consequence of the high level of coherence is the tendency to form speckle patterns.

The optical power of a laser beam may hardly change during propagation in a transparent medium, or quickly decay in an absorbing or scattering medium. Inhomogeneous media (i.e., media with a locally varying refractive index) can also distort the shapes of laser beams. This can happen due to e.g. thermal effects such as thermal lensing in a gain medium.

Some lasers emit continuously, but a laser beam can also consist of a fast sequence of pulses, with many millions or even billions of pulses per second (→ pulse repetition rate).

Most laser beams are linearly polarized, i.e., the electric field oscillates in a certain direction perpendicular to the propagation direction. Some lasers, however, emit light with an undefined, fluctuating polarization state.

A laser beam of visible light with sufficiently high power may be visible when propagating in air. This is because a tiny portion of the optical power is scattered by dust particles and/or density fluctuations in the air and can therefore reach the observing eye. When the laser beam hits some diffusely scattering object, such as a white screen, a much brighter spot is seen on that screen, since most of the optical power is scattered at this point.

Near Field and Far Field of Laser Beams

The near field of a laser beam is understood to be the region around the beam waist (focus). The far field concerns the beam profile far from the beam waist, i.e., in a distance from the focus which is large compared with the effective Rayleigh length. The far field intensity profile reveals details of the beam divergence, which in the near field can be obtained only with wavefront measurements. As it is often not practical to access the far field directly, one may use a focusing lens (or mirror) to obtain an intensity profile in its focal plane which reveals a scaled-down version of the far field pattern.

Experimental Characterization of Laser Beams

There are various devices and techniques for characterizing a laser beam in various respects:

For many laser applications, it is essential to have proper means for beam diagnostics, as many possible problems can be identified with such instruments.


[1]H. Kogelnik and T. Li, “Laser beams and resonators”, Appl. Opt. 5 (10), 1550 (1966)
[2]A. E. Siegman, “Defining, measuring, and optimizing laser beam quality”, Proc. SPIE 1868, 2 (1993)
[3]A. E. Siegman, Lasers, University Science Books, Mill Valley, CA (1986)

See also: laser light, collimated beams, coherence, beam quality, Gaussian beams, beam divergence, beam pointing fluctuations, polarization of laser emission, speckle, beam profilers, powermeters, Spotlight article 2010-04-08

How do you rate this article?

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you like our website, you may also want to get our newsletters!

higher-order solitons

Evolution of the spectrum of a third-order soliton pulse.

This diagram has been made with the RP ProPulse software.

– Show all banners –

– Get your own banner! –