Encyclopedia … combined with a great Buyer's Guide!

Laser Guide Stars

Acronym: LGS

Definition: small bright spots in the sky, generated with laser beams for use in astronomy with adaptive optics imaging

Alternative terms: artificial guide stars, sodium guide stars, laser beacons

Category: methodsmethods

Author:

Cite the article using its DOI: https://doi.org/10.61835/nys

Get citation code: Endnote (RIS) BibTex plain textHTML

The quality and size of modern astronomical telescopes have been enormously increased; telescopes with mirror diameters of several meters and very high surface quality are used in many observatories. The image resolution of the best and largest of these telescopes is already no longer limited by the optics themselves, but by atmospheric distortions: the light from astronomical objects can travel over huge distances in space without significant distortions, but temperature and pressure variations associated with turbulences in the Earth's atmosphere can lead to significant distortions, even at favorable locations on mountains with a clear sky.

A straightforward solution to this problem is to use space-based telescopes. However, these cannot be as large as terrestrial telescopes, and are very expensive to build, launch, operate, and maintain. Therefore, the alternative solution of atmospheric correction is being increasingly adopted, which makes it possible to reduce strongly the effect of atmospheric distortions for Earth-based telescopes: the wavefront distortions caused by the atmosphere are compensated for with adaptive optics, based on e.g. deformable mirrors with many degrees of freedom. Such a system obviously requires exact information on the current atmospheric distortions. These can be measured by analyzing the wavefronts from a distance point-like object such as a star (called guide star), since without distortions this light would have essentially plane wavefronts.

For precise wavefront correction, the guide star has to be close (in terms of direction) to the object under investigation, and has to be sufficiently bright. Unfortunately, however, one cannot always find a suitable natural guide star. In this situation, an artificial guide star (or laser beacon), temporarily created by shining an intense laser beam into the atmosphere, can replace a natural star. Some laser light is then coming back to the telescope and can be analyzed e.g. with a Shack–Hartmann wavefront sensor. An improved scheme may even use multiple laser guide stars [9, 10].

The position of the artificial guide star may drift somewhat, but this can be corrected e.g. by comparing it with that of a natural star, which does not have to be particularly bright.

Types of Laser Guide Stars

laser beam sent out of the William Herschel Telescope
Figure 1: The William Herschel Telescope at the Roque de Los Muchachos Observatory, La Palma, with a green laser beam as used for a Rayleigh laser guide star. Credit: Tibor Agocs.

The two dominant types of laser guide stars are the sodium beacon and the Rayleigh beacon. The principle of the sodium guide star is to tune the wavelength of the laser radiation to an absorption resonance of sodium atoms at 589.2 nm. This causes sodium atoms, naturally occurring in the mesosphere at an altitude of around 90 km, to absorb laser light and subsequently to emit fluorescence at the same wavelength. This approach has the nice feature of obtaining fluorescence light essentially only from a narrow range of high altitudes. Its disadvantage is that the required orange/yellow laser source with a power of e.g. 10 W or even 50 W and a small linewidth is not easy to construct and accordingly expensive. Available technological options for sodium beacons include

In contrast, a Rayleigh guide star is based on Rayleigh scattering in the lower atmosphere. In order to use only the scattered light from the higher parts of the atmosphere (at roughly 30 km height), one uses a pulsed laser together with time-gating detection in the wavefront sensor. As the Rayleigh beacon is not based on a narrowband resonance, the chosen wavelength is not critical, except that it should be short because Rayleigh scattering is most efficient at short wavelengths. A common choice is that of a green laser source, such as a frequency-doubled solid-state laser, but a copper vapor laser (→ gas lasers) or an excimer laser can also be used. Such laser sources can be less complex than those of sodium guide stars, and at the same time more powerful, but the lower altitude of the backscattered light compromises the quality of the wavefront correction.

In many cases, laser guide star sources emit nanosecond pulses, rather than continuously. The pulsed format simplifies the nonlinear frequency conversion in the laser source, and it makes possible time-gated detection.

Laser Guide Star Systems in Use or in Development

Although a number of different laser sources for laser beacons have been demonstrated, only a few observatories appear to be using laser guide stars so far: the Lick Observatory of the University of California, the Palomar Observatory of Caltech, and the Keck Observatory in Hawaii, all using sodium beacons. There is also the William Herschel Telescope of the Isaac Newton Group in La Palma, Canary Islands, using a Rayleigh guide star. Several other large observatories are currently developing laser guide stars and adaptive optics systems of various types. Examples are the Very Large Telescope of ESO, Gemini North, and the Multiple Mirror Observatory (MMTO) in Arizona.

More to Learn

Encyclopedia articles:

Suppliers

The RP Photonics Buyer's Guide contains six suppliers for laser guide stars. Among them:

Bibliography

[1]L. A. Thompson and C. S. Gardner, “Experiments on laser guide stars at Mauna Kea Observatory for adaptive imaging in astronomy”, Nature 328, 229 (1987); https://doi.org/10.1038/328229a0
[2]B. M. Welsh and C. S. Gardner, “Nonlinear resonant absorption effects on the design of resonance fluorescence lidars and laser guide stars”, Appl. Opt. 28 (19), 4141 (1989); https://doi.org/10.1364/AO.28.004141
[3]M. P. Jelonek et al., “Characterization of artificial guide stars generated in the mesospheric sodium layer with a sum-frequency laser”, J. Opt. Soc. Am. A 11 (2), 806 (1994); https://doi.org/10.1364/JOSAA.11.000806
[4]K. Avicola et al., “Sodium-layer laser-guide-star experimental results”, J. Opt. Soc. Am. A 11 (2), 825 (1994); https://doi.org/10.1364/JOSAA.11.000825
[5]C. E. Max et al., “Design, layout, and early results of a feasibility experiment for sodium-layer laser-guide-star adaptive optics”, J. Opt. Soc. Am. A 11 (2), 813 (1994); https://doi.org/10.1364/JOSAA.11.000813
[6]J.-P. Pique and S. Farinotti, “Efficient modeless laser for a mesospheric sodium laser guide star”, J. Opt. Soc. Am. B 20 (10), 2093 (2003); https://doi.org/10.1364/JOSAB.20.002093
[7]J. C. Bienfang et al., “20 W of continuous-wave sodium D2 resonance radiation from sum-frequency generation with injection-locked lasers”, Opt. Lett. 28 (22), 2219 (2003) https://doi.org/10.1364/OL.28.002219
[8]F. Marc et al., “Effects of laser beam propagation and saturation on the spatial shape of sodium laser guide stars”, Opt. Express 17 (7), 4920 (2009); https://doi.org/10.1364/OE.17.004920
[9]F. Rigaut et al., “Gemini multiconjugate adaptive optics system review - I. Design, trade-offs and integration”, Mon. Not. R. Astron. Soc. 437 (3), 2361 (2014)
[10]B. Neichel et al., “Gemini multiconjugate adaptive optics system review – II. Commissioning, operation and overall performance”, Mon. Not. R. Astron. Soc. 440 (2), 1002 (2014); https://doi.org/10.1093/mnras/stu403
[11]T. J. Kane et al., “Laser remote magnetometry using mesospheric sodium”, J. Geophys. Res.: Space Physics 123 (8), 6171 (2018); https://doi.org/10.1029/2018JA025178
[12]Y. Lu et al., “208 W all-solid-state sodium guide star laser operated at modulated-longitudinal mode”, Opt. Express 27 (15), 20282 (2019); https://doi.org/10.1364/OE.27.020282
[13]X. Yang et al., “Diamond sodium guide star laser”, Opt. Lett. 45 (7), 1898 (2020); https://doi.org/10.1364/OL.387879
[14]P. Ma et al., “Kilowatt-level ytterbium-Raman fiber amplifier with a narrow-linewidth and near-diffraction-limited beam quality”, Opt. Lett. 45 (7), 1974 (2020); https://doi.org/10.1364/OL.387151
[15]H.-Y. Li et al., “Numerical study on the influence of the linewidth of a QCW pulsed sodium laser on the brightness of a guide star”, Opt. Express 29 (24), 40397 (2021); https://doi.org/10.1364/OE.443293
[16]Keck Observatory in Hawaii, http://www.keckobservatory.org/
[17]Lick Observatory of the University of California, http://mthamilton.ucolick.org/
[18]Palomar Observatory of Caltech, http://www.astro.caltech.edu/palomar/
[19]Isaac Newton Group of Telescopes of La Palma, http://www.ing.iac.es/

(Suggest additional literature!)

Questions and Comments from Users

Here you can submit questions and comments. As far as they get accepted by the author, they will appear above this paragraph together with the author’s answer. The author will decide on acceptance based on certain criteria. Essentially, the issue must be of sufficiently broad interest.

Please do not enter personal data here; we would otherwise delete it soon. (See also our privacy declaration.) If you wish to receive personal feedback or consultancy from the author, please contact him, e.g. via e-mail.

Spam check:

By submitting the information, you give your consent to the potential publication of your inputs on our website according to our rules. (If you later retract your consent, we will delete those inputs.) As your inputs are first reviewed by the author, they may be published with some delay.

preview

Connect and share this with your network:

Follow our specific LinkedIn pages for more insights and updates: