RP Photonics logo
RP Photonics
Encyclopedia
Consulting Software Encyclopedia Buyer's Guide

Short address: rpp-con.com

Dr. Paschotta, the founder of RP Photonics, supports your R & D with his deep expertise. Save time and money with efficient support!

Short address: rpp-soft.com

Powerful simulation software for fiber lasers and amplifiers, resonator design, pulse propagation and multilayer coating design.

Short address: rpp-enc.com

The famous Encyclopedia of Laser Physics and Technology provides a wealth of high-quality scientific and technical information.

Short address: rpp-bg.com

In the RP Photonics Buyer's Guide, you easily find suppliers for photo­nics products. As a supp­lier, you can profit from enhanced entries!

Learn on lasers and photonics every day!
VL logo part of the
Virtual
Library

Laser Marking

<<<  |  >>>  |  Feedback

Definition: a group of methods for labeling materials with lasers

German: Laser-Markieren, Laser-Beschriften

Laser marking is a method for labeling various kinds of objects using a laser. The principle of laser marking is that a laser beam somehow modifies the optical appearance of a surface that it hits. This can occur through a variety of mechanisms:

laser marking station

Figure 1: TruMark laser marking station. The photograph was kindly provided by TRUMPF Laser.

By scanning the laser beam (e.g. with two movable mirrors), it is possible to quickly write letters, symbols, bar codes, and other graphics, using a vector scan or a raster scan. Another method is to use a mask which is imaged on the workpiece (projection marking, mask marking). This method is simple and faster (applicable even with moving workpieces) but less flexible than scanning.

Laser marking has a huge variety of applications:

Compared with other marking technologies such as ink jet printing and mechanical marking, laser marking has a number of advantages, such as very high processing speeds, low operation cost (no use of consumables), constant high quality and durability of the results, avoiding contaminations, the ability to write very small features, and very high flexibility in automation.

Plastic materials, wood, cardboard, paper, leather and acrylic are often marked with relatively low-power CO2 lasers. For metallic surfaces, these lasers are less suitable due to the small absorption at their long wavelengths (around 10 μm); laser wavelengths e.g. in the 1-μm region, as can be obtained e.g. with lamp- or diode-pumped Nd:YAG lasers (typically Q-switched) or with fiber lasers, are more appropriate. Typical laser powers used for marking are of the order of 10 to 100 W. Shorter wavelengths such as 532 nm, such as obtained by frequency doubling of YAG lasers, can be advantageous, but such sources are not always economically competitive. For marking of metals like gold, which has too low absorption in the 1-μm spectral region, short laser wavelengths are essential.

Demands on Lasers for Marking

Lasers for marking applications must meet a number of demands. Some typical ones are:

Depending on the specific circumstances, different types of lasers can be most suitable for a marking application. For example, Q-switched vanadate lasers can be superior when high pulse repetition rates (> 100 kHz) are important. Fiber lasers, which are in that case actually master oscillator power amplifier (MOPA) systems, are very flexible in terms of pulse repetition rates and interruption of pulse trains, but often emit longer pulses with lower pulse energies and peak power. CO2 lasers can be superior in cases where their long wavelength is suitable and a high average power is needed.

See also: lasers, lamp-pumped lasers, fiber lasers, laser applications

Category: methods

How do you rate this article?

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent
Comments:

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you like our website, you may also want to get our newsletters!

cover of print encyclopedia

The Encyclopedia of Laser Physics and Technology is also available in the form of a two-volume book. Maybe you would enjoy reading it also in that form! The print version has a carefully designed layout and can be considered a must-have for any institute library, laser research group, or laser company. You may order the print version via Wiley-VCH.

arrow

Have you seen the
RP Photonics Buyer's Guide?

It lists many hundreds of suppliers for photonics products, and is just one mouse click away from the extremely popular Encyclopedia of Laser Physics and Technology:

Our Buyer's Guide is what you need:

And surely you will remember where to find this useful resource again!

Suppliers: get your free entries, and enhanced visibility with paid entries.

Tailored Training Courses

Within one or two days, a tailored training course at your location can boost the competence of your team. An investment which can pay back very rapdily!

Read a random article every day in order to steadily learn about photonics!

This resource is provided by
RP Photonics Consulting GmbH.

You can get technical consulting from the author, Dr. Rüdiger Paschotta.

Beam Propagation Software

Analyze beam propagation in specialty fibers, waveguides, couplers, etc. with the new version of RP Fiber Power!

beam propagation

Free Fiber Optics Software!

RP Fiber Calculator software

RP Fiber Calculator – a convenient tool for calculations on optical fibers -- offered for free
let us celebrate the 10-year anniversary of RP Photonics!