RP Photonics logo
RP Photonics
Encyclopedia
Consulting Software Encyclopedia Buyer's Guide

Short address: rpp-con.com

Dr. Paschotta, the founder of RP Photonics, supports your R & D with his deep expertise. Save time and money with efficient support!

Short address: rpp-soft.com

Powerful simulation software for fiber lasers and amplifiers, resonator design, pulse propagation and multilayer coating design.

Short address: rpp-enc.com

The famous Encyclopedia of Laser Physics and Technology provides a wealth of high-quality scientific and technical information.

Short address: rpp-bg.com

In the RP Photonics Buyer's Guide, you easily find suppliers for photo­nics products. As a supp­lier, you can profit from enhanced entries!

Learn on lasers and photonics every day!
VL logo part of the
Virtual
Library

Photodarkening

<<<  |  >>>  |  Feedback

Buyer's Guide

Use the RP Photonics Buyer's Guide to find suppliers for photonics products! You will hardly find a more convenient resource.

Definition: the phenomenon that the optical power losses in a medium can grow when the medium is irradiated with light at certain wavelengths

German: lichtinduzierte Verluste

Category: optical materials

How to cite the article; suggest additional literature

Various transparent optical media such as optical fibers, laser crystals and nonlinear crystal materials exhibit photodarkening (sometimes also called photochromic damage or photo-induced absorption) when they are irradiated with light at certain wavelengths. This means that the transmission losses resulting from absorption or scattering grow with time. The mechanisms involved and the characteristic parameters (e.g. the maximum amount of losses, its spectral shape, the dependence on light intensity, wavelength and duration of irradiation, and the reversibility) can vary greatly, depending on the material. In many cases, the photodarkening mechanism involves the formation of color centers or other microscopic structural transformations in the medium. Photodarkening can lead to serious performance degradations and lifetime limitations of optical devices, and its minimization may require the optimization of materials and operation conditions.

In the following sections, some technologically important situations with photodarkening are discussed.

Photodarkening Caused by Ultraviolet Light

Silica fibers can transmit ultraviolet light, but with propagation losses which are significantly higher than in the visible or near-infrared spectral region. In addition, a rapid further increase in losses can be induced by the ultraviolet light. To a significant extent, this UV-induced photodarkening can be reduced with certain dopants (e.g. fluorine) or other treatments. Fibers with high hydroxyl (OH) content are often found to be superior to low-OH fibers, even though the latter have better transmission in the near-infrared region. However, there are also low-OH fibers with good UV transmission and resistance. Also, hydrogen-impregnated fibers can exhibit drastically improved resistance against irradiation with excimer laser light at 193 nm [14], even though hydrogen loading is in other cases used for increasing the photosensitivity of fibers for UV writing of fiber Bragg gratings. Certainly, the effectiveness of such methods for improved UV transmission and resistance depends strongly on the wavelengths involved.

Even blue light can cause photodarkening in silica-based fibers, when they are doped with germanium [1]. The damage mechanism involves a two-photon excitation process.

Note that similar photodarkening can result from irradiation with gamma rays. This is relevant e.g. for space applications of fiber devices.

Photodarkening in Ytterbium-doped Silica Fibers

Ytterbium-doped optical fibers can exhibit severe transmission losses, which are strongest at short wavelengths (e.g. in the visible spectral range) and much weaker (but still important) e.g. in the 1-μm spectral region, where ytterbium-doped fiber lasers and amplifiers operate. Such losses can occur in new fibers [7] but can also grow during operation of a fiber laser or amplifier [16]. The rate with which these losses grow appears to be proportional to the seventh power of the density of excited ytterbium ions [16]. This means that a fast degradation of such fibers can result from operation with a high fractional ytterbium excitation density (as can occur, e.g., in core-pumped fiber amplifiers), particularly for fibers with a high doping concentration and poor homogeneity (formation of ion clusters). On the other hand, the strong dependence on the excitation density suggests that many devices can be designed to operate in a relatively safe operating regime where long device lifetimes can be expected. Difficult cases are those where a high doping concentration is required (e.g. in order to mitigate nonlinear effects via a reduced fiber length), or where high excitation levels are inevitable (e.g. fiber lasers operating around 975 nm).

The photodarkening effect normally appears to be permanent, although it has been demonstrated that it can be reversed by heating the fiber [17] or by irradiation with ultraviolet light [18]. Further studies will hopefully reveal the detailed physical mechanism and the dependence on the chemical composition of the fiber core. There is evidence for the belief that the formation of Yb2+ ions plays an important role [20], although it is not yet clear how Yb2+ ions can be generated by exciting Yb3+ ions. It is already known that Yb-doped phosphate fibers [19] and phosphosilicate fibers [20] exhibit much weaker photodarkening. Also, codoping with cerium appears to improve the durability of Yb-doped fibers [21, 22].

Photodarkening in Thulium-doped Fibers

There are reports of photodarkening occurring in thulium-doped silica fibers [2], more precisely in phosphosilicate and germanosilicate glasses, where a broadband loss (particularly at short wavelengths) occurs following irradiation with high peak powers, e.g. from a mode-locked laser. A crucial ingredient is the excitation of high-lying energy levels of the Tm3+ ions. This phenomenon may not be technologically serious, since thulium-doped silica fibers are used for continuous-wave infrared lasers where high pump intensities and high concentrations of highly excited thulium ions are not required.

The situation is different for thulium-doped fluoride fibers as used mainly for upconversion fiber lasers, generating blue light when being pumped with infrared light e.g. around 1140 nm. Although this three-step upconversion scheme could in principle be very efficient [8], the actual device performance can be severely degraded by photodarkening [5, 6]. As for silica fibers, it is believed that photodarkening is related to the formation of color centers, which becomes possible if ions are excited to energies above the bandgap of the host glass. Absorption of blue light (e.g. via upconversion lasing) has been shown to reduce at least temporarily the induced absorption, probably by removing color centers. In this sense, the photodarkening is partially reversible. The physical details are very complicated and have so far not been fully understood.

Photodarkening effects have also been reported for other rare-earth-doped fibers, e.g. with dopants such as praseodymium (Pr3+), thulium (Tm3+), cerium (Ce3+), and terbium (Tb3+).

Induced Losses in Nonlinear Crystals

Some nonlinear crystal materials exhibit induced absorption when irradiated with light having short wavelengths in the visible or ultraviolet spectral region (see e.g. Ref. [4]). The best known is the effect of reversible green-induced infrared absorption (GRIIRA) in materials such as lithium niobate (LiNbO3), lithium tantalate (LiTaO3), and potassium titanyl phosphate (KTiOPO4, KTP). Particularly in the case of KTP, this is often called gray tracking; a gray line (track) is observed where the crystal has been irradiated.

Such effects are often reversible, but may also lead to permanent photochromic damage when the device is operated for a longer time. They are observed e.g. in frequency doublers which are pumped with 1-μm lasers (e.g. YAG lasers), or in optical parametric oscillators pumped at shorter wavelengths, and similar effects are observed for blue light (blue-induced infrared absorption, BLIIRA). For high-power devices, the resulting heating can seriously disturb the phase matching and also lead to thermal lensing. Particularly the former effect can make the conversion process unstable.

In niobates, the induced absorption appears to be related to the formation of polarons (electrons trapped by antisite niobium ions), also called color centers, which can result e.g. from two-photon absorption. It can be greatly reduced by doping the material with magnesium oxide (MgO) [11] and/or by using stoichiometric material, which contains fewer of the intrinsic niobium antisite defects. At the same time, both measures reduce the tendency for photorefractive beam distortions, as they increase the ionic conductivity.

In KTP, the induced absorption is also attributed to polarons; carriers may in that case be captured e.g. by Ti4+ ions or by Fe3+ impurities. An important difference from niobates is that induced absorption appears to occur only for pulses with sufficiently high peak intensity. Gray tracking usually disappears within a few hours after irradiation. Its strength depends on the crystal quality and thus on the fabrication method. Other important parameters are the pulse duration and pulse repetition rate.

Bibliography

[1]L. J. Poyntz-Wright and P. St. J. Russell, “Spontaneous relaxation processes in irradiated germanosilicate optical fibres”, Electron. Lett. 25 (7), 478 (1989)
[2]M. Broer et al., “Highly nonlinear near-resonant photodarkening in a thulium-doped aluminosilicate glass fiber”, Opt. Lett. 18 (10), 799 (1993)
[3]B. Boulanger et al., “Study of KTiOPO4 gray-tracking at 1064, 532, and 355 nm”, Appl. Phys. Lett. 65 (19), 2401 (1994)
[4]H. Mabuchi et al., “Blue-light-induced infrared absorption in KNbO3”, J. Opt. Soc. Am. B 11 (10), 2023 (1994)
[5]P. R. Barber et al., “IR-induced photodarkening in Tm-doped fluoride fibres”, Opt. Lett. 20 (21), 2195 (1995)
[6]P. Laperle and A. Chandonnet, “Photoinduced absorption in thulium-doped ZBLAN fibers”, Opt. Lett. 20 (24), 2484 (1995)
[7]R. Paschotta et al., “Lifetime quenching in Yb-doped fibres”, Opt. Commun. 136, 375 (1997)
[8]R. Paschotta, P. R. Barber, A. C. Tropper, and D. C. Hanna, “Characterization and modeling of thulium:ZBLAN blue upconversion fiber lasers”, J. Opt. Soc. Am. B 14 (5), 1213 (1997)
[9]B. Boulanger and J. P. Feve, “Optical studies of laser-induced gray-tracking in KTP”, IEEE J. Quantum Electron. 35 (3), 281 (1999)
[10]C. G. Akins, “Photodarkening and photobleaching in fiber optic Bragg gratings”, IEEE J. Lightwave Technol. 15 (8), 1363 (1997)
[11]Y. Furukawa et al., “Green-induced infrared absorption in MgO doped LiNbO3”, Appl. Phys. Lett. 78 (14), 1970 (2001)
[12]L. B. Glebov, “Linear and nonlinear photoionization of silicate glasses”, Glass Sci. Technol. 75, C2 (2002)
[13]S. Ferwana et al., “All-silica fiber with low or medium OH-content for broadband applications in astronomy”, Proc. SPIE 5494, 598 (2004)
[14]M. Oto et al., “Fluorine doped silica glass fiber for deep ultraviolet light”, J. Non-Cryst. Solids 349, 133 (2004)
[15]M. Engholm et al., “Strong UV absorption and visible luminescence in ytterbium-doped aluminosilicate glass under UV excitation”, Opt. Lett. 32 (22), 3352 (2007)
[16]J. J. Koponen et al., “Measuring photodarkening from single-mode ytterbium doped silica fibers”, Opt. Express 14 (24), 11539 (2006)
[17]J. Jasapara et al., “Effect of heat and H2 gas on the photo-darkening of Yb3+ fibers”, paper CTuQ5 presented at Optical Fiber Communications (OFC) (2006)
[18]I. Manek-Hönninger et al., “Photodarkening and photobleaching of an ytterbium-doped silica double-clad LMA fiber”, Opt. Express 15 (4), 1606 (2007)
 [19]Y. W. Lee et al., “Measurement of high photodarkening resistance in heavily Yb3+-doped phosphate fibres”, Electron. Lett. 44 (1), 14 (2008)
[20]M. Engholm and L. Norim, “Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass”, Opt. Express 16 (2), 1260 (2008)
[21]M. Engholm et al., “Improved photodarkening resistivity in ytterbium-doped fiber lasers by cerium codoping”, Opt. Lett. 34 (8), 1285 (2009)
[22]P. Jelger et al., “Degradation-resistant lasing at 980 nm in a Yb/Ce/Al-doped silica fiber”, J. Opt. Soc. Am. B 27 (2), 338 (2010)
[23]R. Peretti et al., “How do traces of thulium explain photodarkening in Yb doped fibers?”, Opt. Express 18 (19), 20455 (2010)
[24]A. V. Kir'yanov, “Electron-irradiation and photo-excitation darkening and bleaching of Yb doped silica fibers: comparison”, Opt. and Photon. J. 1, 155 (2011)

(Suggest additional literature!)

See also: fibers, laser crystals, nonlinear crystal materials, laser-induced damage


Dr. R. Paschotta

This encyclopedia is authored by Dr. Rüdiger Paschotta, the founder and executive of RP Photonics Consulting GmbH. Contact this distinguished expert in laser technology, nonlinear optics and fiber optics, and find out how his technical consulting services (e.g. product designs, problem solving, independent evaluations, or staff training) and software could become very valuable for your business!

How do you rate this article?

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent
Comments:

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you like our website, you may also want to get our newsletters!

arrow

RP Fiber Power – the versatile Fiber Optics Software

An Amazing Tool

RP Fiber Power software

This amazing tool is extremely helpful for the development of passive and active fiber devices.

ASE

Watch our quick video tour!

Single-mode and Multi­mode Fibers

fibers

Calculate mode properties such as

  • amplitude distributions (near field and far field)
  • effective mode area
  • effective index
  • group delay and chromatic dispersion

Also calculate fiber coupling efficiencies; simulate effects of bending, nonlinear self-focusing or gain guiding on beam propagation, higher-order soliton propagation, etc.

Arbitrary Index Profiles

A fiber's index profile may be more complicated than just a circle:

special fibers

Here, we "printed" some letters, translated this into an index profile and initial optical field, propagated the light over some distance and plotted the output field – all automated with a little script code.

Fiber Couplers, Double-clad Fibers, Multicore Fibers, …

fiber devices

Simulate pump absorption in double-clad fibers, study beam propagation in fiber couplers, light propagation in tapered fibers, analyze the impact of bending, cross-saturation effects in amplifiers, leaky modes, etc.

Fiber Amplifiers

fiber amplifier

For example, calculate

  • gain and saturation characteristics (for continuous or pulsed operation)
  • energy transfers in erbium-ytterbium-doped amplifier fibers
  • influence of quenching effects, amplified spontaneous emission etc.

in single amplifier stages or in multi-stage amplifier systems, with double-clad fibers, etc.

Fiber-optic Telecom Systems

eye diagram

For example,

  • analyze dispersive and nonlinear signal distortions
  • investigate the impact of amplifier noise
  • optimize nonlinear management and the placement of amplifiers

Find out in detail what is going on in such a system!

Fiber Lasers

fiber laser

For example, analyze and optimize the

  • power conversion efficiency
  • wavelength tuning range
  • Q switching dynamics
  • femtosecond pulse generation with mode locking

for lasers based on double-clad fiber, with linear or ring resonator, etc.

Ultrafast Fiber Lasers and Amplifiers

fiber laser

For example, study

  • pulse formation mechanisms
  • impact of nonlinearities and chromatic dispersion
  • parabolic pulse amplification
  • feedback sensitivity
  • supercontinuum generation

Apply any sequence of elements to your pulses!

… and even Bulk Devices

regenerative amplifier

For example, study

  • Q switching dynamics
  • mode-locking behavior
  • impact of nonlinearities and chromatic dispersion
  • influence of a saturable absorber
  • chirped-pulse amplification
  • regenerative amplification

RP Fiber Power is an extremely versatile tool!

Mode Solver

fiber modes

For example, calculate

  • amplitude and intensity profiles
  • effective mode areas
  • cut-off wavelengths
  • propagation constants
  • group velocities
  • chromatic dispersion

All this is calculated with high efficiency!

Beam Propagation

beam propagation

Propagate optical field with arbitrary wavefronts through fibers. These may be asymmetric, bent, tapered, exhibit random disturbances, etc.

See our demo video for numerical beam propagation.

Laser-active Ions

level scheme

Work with the standard gain model, or define your own level scheme!

Can include different ions, energy transfers, upconversion and quenching effects, complicated pumping schemes, etc.

Multiple Pump and Signal Waves, ASE

optical channels

Define multiple pump and signal waves and many ASE channels – each one with its own transverse intensity profile, loss coefficient etc.

The power calculations are highly efficient and reliable.

Simple Use and High Flexibility Combined

For simpler tasks, use convenient forms:

signal parameters

Script code is automatically generated and can then be modified by the user. A powerful script language gives you an unparalleled flexibility!

High-quality Documentation and Competent Support

The carefully prepared comprehensive documentation includes a PDF manual and an interactive online help system.

Competent technical support is provided: the developer himself will help you and make sure that any problem is solved!

Our support is like included technical consulting.

Boost your competence, efficiency and creativity!

  • Stop fishing in the dark! Develop a clear quantitative understanding of your devices.
  • Explore the effects of possible design changes on your desk.
  • That way, get most efficient in the lab.
  • Find optimized solutions efficiently, minimizing time to market.
  • Get new ideas by playing with your models.

Efficiency and success of
R & D are not a matter of chance.

See our detailed description with many case studies!

Contact us to get a quotation!

– Show all banners –

– Get your own banner! –