RP Photonics logo
RP Photonics
Encyclopedia
Consulting Software Encyclopedia Buyer's Guide

Short address: rpp-con.com

Dr. Paschotta, the founder of RP Photonics, supports your R & D with his deep expertise. Save time and money with efficient support!

Short address: rpp-soft.com

Powerful simulation software for fiber lasers and amplifiers, resonator design, pulse propagation and multilayer coating design.

Short address: rpp-enc.com

The famous Encyclopedia of Laser Physics and Technology provides a wealth of high-quality scientific and technical information.

Short address: rpp-bg.com

In the RP Photonics Buyer's Guide, you easily find suppliers for photo­nics products. As a supp­lier, you can profit from enhanced entries!

Learn on lasers and photonics every day!
VL logo part of the
Virtual
Library

Q-switched Lasers

<<<  |  >>>  |  Feedback

Buyer's Guide

The ideal place to find suppliers for photonics products: high-quality information, simple and fast, respects your privacy!

79 suppliers for Q-switched lasers are listed.

Among them:

banner

Your are not yet listed? Get your entry!

Ask RP Photonics to design a Q-switched laser according to your needs, or to predict a variety of performance details before you start expensive and time-consuming experiments. Also, you may obtain the software RP Fiber Power for modeling Q-switched lasers yourself.

Definition: lasers which emit optical pulses, relying on the method of Q switching

German: gütegeschaltete Laser

Categories: lasers, light pulses

How to cite the article; suggest additional literature

A Q-switched laser is a laser to which the technique of active or passive Q switching is applied, so that it emits energetic pulses. Typical applications of such lasers are material processing (e.g. cutting, drilling, laser marking), pumping nonlinear frequency conversion devices, range finding, and remote sensing. Note that the article on Q switching contains more details on Q-switching techniques.

Q-switched lasers can be pumped either continuously or with pulses, e.g. from discharge lamps (particularly for low pulse repetition rates). For continuous pumping, the gain medium should have a long upper-state lifetime to reach a high enough stored energy rather than losing the energy as fluorescence. In any case, the saturation energy should not be too low, because this could lead to excessive gain, so that the premature onset of lasing is more difficult to suppress. The latter problem can occur particularly for fiber lasers.

Types of Q-switched Lasers

actively Q-switched laser

Figure 1: Schematic setup of an actively Q-switched laser.

The most common type is the actively Q-switched solid-state bulk laser. Solid-state gain media have a good energy storage capability, and bulk lasers allow for large mode areas (thus for higher pulse energies and peak powers) and shorter laser resonators (e.g. compared with fiber lasers). The laser resonator contains an active Q switch – an optical modulator, which in most cases is an acousto-optic modulator.

For wavelengths in the 1-μm spectral region, the most common pulsed lasers are based on a neodymium-doped laser crystal such as Nd:YAG, Nd:YVO4, or Nd:YLF, although ytterbium-doped gain media can also be used. A small actively Q-switched solid-state laser may emit 100 mW of average power in 10-ns pulses with a 1-kHz repetition rate and 100 μJ pulse energy. The peak power is then ≈ 9 kW. The highest pulse energies and shortest pulse durations are achieved for low pulse repetition rates (below the inverse upper-state lifetime), at the expense of somewhat reduced average output power. A somewhat larger Nd:YAG laser with a 10-W pump source (e.g. a diode bar) can reach pulse energies of several millijoules. Nd:YVO4 is attractive particularly for short pulse durations and high pulse repetition rates, or for operation with low pump power.

Q-switched lasers with longer emission wavelengths are often based on erbium-doped gain media such as Er:YAG for 1.65 or 2.94 μm, or thulium-doped crystals for ≈ 2 μm.

Significantly larger pulse energies can be obtained from amplifier systems (MOPAs). For high average powers combined with moderate pulse energies, fiber MOPAs, also called MOFAs, can be used.

passively Q-switched laser

Figure 2: Schematic setup of a passively Q-switched laser. The saturable absorber is a crystal (e.g. of Cr:YAG) within the laser resonator.

Particularly for low pulse repetition rates, lamp pumping can be an economically favorable option, since discharge lamps are much cheaper than laser diodes for a given peak power. For higher powers, however, diode pumping becomes more attractive, also because thermal effects in the laser crystal are strongly reduced.

A passively Q-switched laser contains a saturable absorber (passive Q switch) instead of the modulator. For continuous pumping, a regular pulse train is obtained, where the timing of the pulses usually cannot be precisely controlled with external means, and the pulse repetition rate increases with increasing pump power. The most frequently used saturable absorbers for 1-μm lasers are Cr:YAG crystals.

Q-switched microchip laser

Figure 3: Microchip laser, passively Q-switched with a SESAM. The left-hand side of the laser crystal has a dielectric coating, serving as the output coupling mirror.

Passively Q-switched microchip lasers have particularly compact setups. Such lasers typically emit pulses with energies between nanojoules and a few microjoules, average output powers of some tens of milliwatts, and repetition rates between a few kilohertz and a few MHz.

Generally, passively Q-switched lasers are more limited in average output power than actively Q-switched versions, since saturable absorbers dissipate some of the energy, so that limiting thermal effects can occur. Note that saturable absorbers usually have some nonsaturable losses, which often increase the dissipated energy well beyond the level which is unavoidable in principle.

Particularly some of the smaller Q-switched lasers, but also some lasers with longer resonators containing an optical filter such as a volume Bragg grating, operate on a single axial resonator mode. This leads to a clean temporal shape and to a small optical bandwidth, often limited by the pulse duration. Other lasers oscillate on multiple resonator modes, which leads to mode beating effects: the optical power is modulated with frequencies which are integer multiples of the resonator round-trip frequency.

Fiber lasers can also be actively or passively Q-switched. However, all-fiber devices are fairly limited in terms of performance, whereas Q-switched fiber lasers containing bulk-optical elements (e.g. an acousto-optic Q switch, see Figure 4) are less robust and still less powerful than bulk lasers. The relatively small mode areas (even when using large mode area fibers) introduce problems with fiber nonlinearities and laser-induced damage, which set limits on the pulse energies and particularly the peak powers achievable. Note also that the typically very high laser gain in a fiber laser has important effects on the laser dynamics; in particular, it can lead to the formation of a complicated temporal sub-structure.

actively Q-switched fiber laser setup

Figure 4: Setup of an actively Q-switched fiber laser.

On the other hand, high-power fiber amplifiers are suitable for amplifying pulse trains with high average power but moderate pulse energy. Some degree of nonlinear pulse distortion in such an amplifier is often acceptable for applications.

Design Issues

Depending on the design goals for a Q-switched laser, different solutions can be appropriate. In the following, some possible goals, encountered issues and trade-offs are listed:

Laser Safety

Note that the high pulse energies and peak powers can raise serious laser safety issues even for lasers with low average output power. A single shot into an eye will in many cases be the last thing that an eye has seen. Such risks can be substantially reduced by using Q-switched lasers operating at eye-safe wavelengths.

Bibliography

[1]F. J. McClung and R. W. Hellwarth, “Giant optical pulsations from ruby”, J. Appl. Phys. 33 (3), 828 (1962)
[2]G. Smith, “The early laser years at Hughes Aircraft Company”, IEEE J. Quantum Electron. 20 (6), 577 (1984)
[3]J. J. Zayhowski, “Q-switched operation of microchip lasers”, Opt. Lett. 16 (8), 575 (1991)
[4]L. E. Holder et al., “One joule per Q-switched pulse diode-pumped laser”, IEEE J. Quantum Electron. 28 (4), 986 (1992)
[5]J. J. Zayhowski and C. Dill III, “Coupled-cavity electro-optically Q-switched Nd:YVO4 microchip lasers”, Opt. Lett. 20 (7), 716 (1995)
[6]J. J. Degnan, “Optimization of passively Q-switched lasers”, IEEE J. Quantum Electron. 31 (11), 1890 (1995)
[7]R. S. Conroy et al., “Self-Q-switched Nd:YVO4 microchip lasers”, Opt. Lett. 23 (6), 457 (1998)
[8]G. J. Spühler et al., “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers”, J. Opt. Soc. Am. B 16 (3), 376 (1999)
[9]R. Paschotta et al., “Passively Q-switched 0.1 mJ fiber laser system at 1.53 μm”, Opt. Lett. 24 (6), 388 (1999)
[10]J. A. Alvarez-Chavez et al., “High-energy, high-power ytterbium-doped Q-switched fiber laser”, Opt. Lett. 25 (1), 37 (2000)
[11]K. Du et al., “Electro-optically Q-switched Nd:YVO4 slab laser with a high repetition rate and a short pulse width”, Opt. Lett. 28 (2), 87 (2003)
[12]A. A. Fotiadi et al., “Dynamics of a self-Q-switched fiber laser with a Rayleigh-stimulated Brillouin scattering ring mirror”, Opt. Lett. 29 (10), 1078 (2004)
[13]Y. Wang and C. Xu, “Modeling and optimization of Q-switched double-clad fiber lasers”, Appl. Opt. 45 (9), 2058 (2006)
[14]L. McDonagh et al., “47 W, 6 ns constant pulse duration, high-repetition-rate cavity-dumped Q-switched TEM00 Nd:YVO4 oscillator”, Opt. Lett. 31 (22), 3303 (2006)
[15]T. Hakulinen and O. G. Okhotnikov, “8 ns fiber laser Q switched by the resonant saturable absorber mirror”, Opt. Lett. 32 (18), 2677 (2007)
[16]N. Vorobiev et al., “Single-frequency-mode Q-switched Nd:YAG and Er:glass lasers controlled by volume Bragg gratings”, Opt. Express 16 (12), 9199 (2008)
[17]R. Horiuchi et al., “1.4-MHz repetition rate electro-optic Q-switched Nd:YVO4 laser”, Opt. Express 16 (21), 16729 (2008)
[18]A. Steinmetz et al., “Reduction of timing jitter in passively Q-switched microchip lasers using self-injection seeding”, Opt. Lett. 35 (17), 2885 (2010)
 [19]R. Bhandari and T. Taira, “Megawatt level UV output from [110] Cr4+:YAG passively Q-switched microchip laser”, Opt. Express 19 (23), 22510 (2011)
[20]R. W. Hellwarth, “Control of fluorescent pulsations”, in Advances in Quantum Electronics (ed. R. Singer), Columbia University Press, New York (1961), p. 334
[21]R. Paschotta, “Intensive light pulses, tailored to your needs”, http://files.hanser.de/zeitschriften/docs/251115111612-51_LP100336_english.pdf; German version: R. Paschotta, “Intensive Lichtpulse nach Maß”, Laser+Photonik 5 / 2005, p. 14
[22]R. Paschotta, "Noise in Laser Technology – Part 2: Fluctuations in Pulsed Lasers"
[23]R. Paschotta, case study on an actively Q-switched Nd:YAG laser

(Suggest additional literature!)

See also: Q switching, Q switches, lasers, nanosecond lasers, lamp-pumped lasers, laser safety, laser-induced damage, Spotlight article 2006-09-16, Spotlight article 2009-03-07


Dr. R. Paschotta

This encyclopedia is authored by Dr. Rüdiger Paschotta, the founder and executive of RP Photonics Consulting GmbH. Contact this distinguished expert in laser technology, nonlinear optics and fiber optics, and find out how his technical consulting services (e.g. product designs, problem solving, independent evaluations, or staff training) and software could become very valuable for your business!

How do you rate this article?

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent
Comments:

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you like our website, you may also want to get our newsletters!

arrow
self-focusing in a fiber

Intensity distribution in a fiber at megawatt power levels. The Kerr nonlinearity destabilizes the initially launched LP11 mode.

This diagram has been made with the RP Fiber Power software.

– Show all banners –

– Get your own banner! –