RP Photonics logo
RP Photonics
Encyclopedia
Consulting Software Encyclopedia Buyer's Guide

Short address: rpp-con.com

Dr. Paschotta, the founder of RP Photonics, supports your R & D with his deep expertise. Save time and money with efficient support!

Short address: rpp-soft.com

Powerful simulation software for fiber lasers and amplifiers, resonator design, pulse propagation and multilayer coating design.

Short address: rpp-enc.com

The famous Encyclopedia of Laser Physics and Technology provides a wealth of high-quality scientific and technical information.

Short address: rpp-bg.com

In the RP Photonics Buyer's Guide, you easily find suppliers for photo­nics products. As a supp­lier, you can profit from enhanced entries!

Learn on lasers and photonics every day!
VL logo part of the
Virtual
Library

Refractive Index

<<<  |  >>>  |  Feedback

Buyer's Guide

Use the RP Photonics Buyer's Guide to find suppliers for photonics products! You will hardly find a more convenient resource.

Definition: a measure of the reduction in the velocity of light in a medium

German: Brechungsindex

Category: general optics

How to cite the article

The refractive index of a transparent optical medium, also called the index of refraction, is the factor by which the phase velocity vph is decreased relative to the velocity of light in vacuum:

refractive index

Here, one assumes linear propagation (i.e. with low optical intensities) of plane waves. Via the phase velocity, the refractive index also determines phenomena such as refraction, reflection and diffraction at optical interfaces.

The wavelength of light in the medium is n times smaller than the vacuum wavelength.

The refractive index can be calculated from the relative permittivity ε and the relative permeability μ of a material:

refractive index

Note that the values of ε and μ at the optical frequency have to be used, which can deviate substantially from those at low frequencies. For usual optical materials, μ is close to unity.

The refractive index of a material depends on the optical frequency or wavelength; this dependency is called chromatic dispersion. Typical refractive index values for glasses and crystals (e.g. laser crystals) in the visible spectral region are in the range from 1.4–2.8, and typically the refractive index increases for shorter wavelengths (normal dispersion). This is a consequence of the fact that the visible spectral region, with high transmission of such materials, lies between spectral regions of strong absorbance: the ultraviolet region with photon energies above the bandgap, and the near- or mid-infrared region with vibrational resonances and their overtones.

refractive index of silica

Figure 1: Refractive index (solid lines) and group index (dotted lines) of silica versus wavelength at temperatures of 0 °C (blue), 100 °C (black) and 200 °C (red). The plots are based on data from M. Medhat et al., J. Opt. A: Pure Appl. Opt. 4, 174 (2002).

Semiconductors exhibit higher refractive indices in their transparency region. For example, gallium arsenide (GaAs) has a refractive index of ≈ 3.5 at 1 μm. This is caused by the strong absorption at wavelengths below the bandgap wavelength of ≈ 870 nm. Consequences of the high index of refraction are strong Fresnel reflections and a large critical angle for total internal reflection at semiconductor–air interfaces.

The wavelength-dependent refractive index of a transparent optical material can often be described analytically with a Sellmeier formula, which contains several empirically obtained parameters. Extended versions of such equations also describe the temperature dependence; such an equation has been used for Figure 1. A precise knowledge of the wavelength and temperature dependence of the refractive index is important for phase matching of nonlinear frequency conversion in nonlinear crystal materials.

In anisotropic media, the refractive index generally depends on the polarization direction (→ birefringence) and the propagation direction (anisotropy). If a medium has a so-called optical axis, the refractive index for light propagation along this axis does not depend on the polarization direction.

A complex refractive index is sometimes used to quantify not only the phase change per unit length, but also (via its imaginary part) optical gain or propagation losses (e.g. caused by absorption).

There is another type of refractive index, the group index, which quantifies the reduction in the group velocity. Extreme excursions of the refractive index and particularly the group index can occur near sharp resonances, as are observed in certain quantum optics experiments. This can be related to extremely large or small values of the group velocity (slow light).

Even a negative refractive index is possible for certain photonic metamaterials (usually consisting of metal–dielectric composites), which have been demonstrated first in the microwave region, but begin to become a reality also in the optical domain. Negative refractive index values give rise to a range of intriguing phenomena. For example, refraction at the interface between vacuum and such a material works such that the refracted beam is on the same side of the surface normal as the incident beam.

For waveguides, each propagation mode can be assigned an effective refractive index according to its phase velocity.

See also: refraction, velocity of light, Sellmeier formula, Kramers–Kronig relations, group index, effective refractive index, nonlinear index

How do you rate this article?

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent
Comments:

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you like our website, you may also want to get our newsletters!

arrow

RP Fiber Power – the versatile Fiber Optics Software

An Amazing Tool

RP Fiber Power software

This amazing tool is extremely helpful for the development of passive and active fiber devices.

ASE

Watch our quick video tour!

Single-mode and Multi­mode Fibers

fibers

Calculate mode properties such as

  • amplitude distributions (near field and far field)
  • effective mode area
  • effective index
  • group delay and chromatic dispersion

Also calculate fiber coupling efficiencies; simulate effects of bending, nonlinear self-focusing or gain guiding on beam propagation, higher-order soliton propagation, etc.

Arbitrary Index Profiles

A fiber's index profile may be more complicated than just a circle:

special fibers

Here, we "printed" some letters, translated this into an index profile and initial optical field, propagated the light over some distance and plotted the output field – all automated with a little script code.

Fiber Couplers, Double-clad Fibers, Multicore Fibers, …

fiber devices

Simulate pump absorption in double-clad fibers, study beam propagation in fiber couplers, light propagation in tapered fibers, analyze the impact of bending, cross-saturation effects in amplifiers, leaky modes, etc.

Fiber Amplifiers

fiber amplifier

For example, calculate

  • gain and saturation characteristics (for continuous or pulsed operation)
  • energy transfers in erbium-ytterbium-doped amplifier fibers
  • influence of quenching effects, amplified spontaneous emission etc.

in single amplifier stages or in multi-stage amplifier systems, with double-clad fibers, etc.

Fiber-optic Telecom Systems

eye diagram

For example,

  • analyze dispersive and nonlinear signal distortions
  • investigate the impact of amplifier noise
  • optimize nonlinear management and the placement of amplifiers

Find out in detail what is going on in such a system!

Fiber Lasers

fiber laser

For example, analyze and optimize the

  • power conversion efficiency
  • wavelength tuning range
  • Q switching dynamics
  • femtosecond pulse generation with mode locking

for lasers based on double-clad fiber, with linear or ring resonator, etc.

Ultrafast Fiber Lasers and Amplifiers

fiber laser

For example, study

  • pulse formation mechanisms
  • impact of nonlinearities and chromatic dispersion
  • parabolic pulse amplification
  • feedback sensitivity
  • supercontinuum generation

Apply any sequence of elements to your pulses!

… and even Bulk Devices

regenerative amplifier

For example, study

  • Q switching dynamics
  • mode-locking behavior
  • impact of nonlinearities and chromatic dispersion
  • influence of a saturable absorber
  • chirped-pulse amplification
  • regenerative amplification

RP Fiber Power is an extremely versatile tool!

Mode Solver

fiber modes

For example, calculate

  • amplitude and intensity profiles
  • effective mode areas
  • cut-off wavelengths
  • propagation constants
  • group velocities
  • chromatic dispersion

All this is calculated with high efficiency!

Beam Propagation

beam propagation

Propagate optical field with arbitrary wavefronts through fibers. These may be asymmetric, bent, tapered, exhibit random disturbances, etc.

See our demo video for numerical beam propagation.

Laser-active Ions

level scheme

Work with the standard gain model, or define your own level scheme!

Can include different ions, energy transfers, upconversion and quenching effects, complicated pumping schemes, etc.

Multiple Pump and Signal Waves, ASE

optical channels

Define multiple pump and signal waves and many ASE channels – each one with its own transverse intensity profile, loss coefficient etc.

The power calculations are highly efficient and reliable.

Simple Use and High Flexibility Combined

For simpler tasks, use convenient forms:

signal parameters

Script code is automatically generated and can then be modified by the user. A powerful script language gives you an unparalleled flexibility!

High-quality Documentation and Competent Support

The carefully prepared comprehensive documentation includes a PDF manual and an interactive online help system.

Competent technical support is provided: the developer himself will help you and make sure that any problem is solved!

Our support is like included technical consulting.

Boost your competence, efficiency and creativity!

  • Stop fishing in the dark! Develop a clear quantitative understanding of your devices.
  • Explore the effects of possible design changes on your desk.
  • That way, get most efficient in the lab.
  • Find optimized solutions efficiently, minimizing time to market.
  • Get new ideas by playing with your models.

Efficiency and success of
R & D are not a matter of chance.

See our detailed description with many case studies!

Contact us to get a quotation!

– Show all banners –

– Get your own banner! –