RP Photonics logo
RP Photonics
Consulting Software Encyclopedia Buyer's Guide

Short address: rpp-con.com

Dr. Paschotta, the founder of RP Photonics, supports your R & D with his deep expertise. Save time and money with efficient support!

Short address: rpp-soft.com

Powerful simulation software for fiber lasers and amplifiers, resonator design, pulse propagation and multilayer coating design.

Short address: rpp-enc.com

The famous Encyclopedia of Laser Physics and Technology provides a wealth of high-quality scientific and technical information.

Short address: rpp-bg.com

In the RP Photonics Buyer's Guide, you easily find suppliers for photo­nics products. As a supp­lier, you can profit from enhanced entries!

Learn on lasers and photonics every day!
VL logo part of the

Refractive Index

<<<  |  >>>  |  Feedback

Buyer's Guide

Use the RP Photonics Buyer's Guide to find suppliers for photonics products! You will hardly find a more convenient resource.

Definition: a measure of the reduction in the velocity of light in a medium

German: Brechungsindex

Category: general optics

Formula symbol: n

Units: (dimensionless number)

How to cite the article; suggest additional literature

The refractive index of a transparent optical medium, also called the index of refraction, is the factor by which the phase velocity vph is decreased relative to the velocity of light in vacuum:

refractive index

Here, one assumes linear propagation (i.e. with low optical intensities) of plane waves. Via the phase velocity, the refractive index also determines phenomena such as refraction, reflection and diffraction at optical interfaces.

The wavelength of light in the medium is n times smaller than the vacuum wavelength.

The refractive index can be calculated from the relative permittivity ε and the relative permeability μ of a material:

refractive index

Note that the values of ε and μ at the optical frequency have to be used, which can deviate substantially from those at low frequencies. For usual optical materials, μ is close to unity.

The refractive index of a material depends on the optical frequency or wavelength; this dependency is called chromatic dispersion. Typical refractive index values for glasses and crystals (e.g. laser crystals) in the visible spectral region are in the range from 1.4–2.8, and typically the refractive index increases for shorter wavelengths (normal dispersion). This is a consequence of the fact that the visible spectral region, with high transmission of such materials, lies between spectral regions of strong absorbance: the ultraviolet region with photon energies above the bandgap, and the near- or mid-infrared region with vibrational resonances and their overtones.

refractive index of silica

Figure 1: Refractive index (solid lines) and group index (dotted lines) of silica versus wavelength at temperatures of 0 °C (blue), 100 °C (black) and 200 °C (red). The plots are based on data from M. Medhat et al., J. Opt. A: Pure Appl. Opt. 4, 174 (2002).

Semiconductors exhibit higher refractive indices in their transparency region. For example, gallium arsenide (GaAs) has a refractive index of ≈ 3.5 at 1 μm. This is caused by the strong absorption at wavelengths below the bandgap wavelength of ≈ 870 nm. Consequences of the high index of refraction are strong Fresnel reflections and a large critical angle for total internal reflection at semiconductor–air interfaces.

The wavelength-dependent refractive index of a transparent optical material can often be described analytically with a Sellmeier formula, which contains several empirically obtained parameters. Extended versions of such equations also describe the temperature dependence; such an equation has been used for Figure 1. A precise knowledge of the wavelength and temperature dependence of the refractive index is important for phase matching of nonlinear frequency conversion in nonlinear crystal materials.

In anisotropic media, the refractive index generally depends on the polarization direction (→ birefringence) and the propagation direction (anisotropy). If a medium has a so-called optical axis, the refractive index for light propagation along this axis does not depend on the polarization direction.

A complex refractive index is sometimes used to quantify not only the phase change per unit length, but also (via its imaginary part) optical gain or propagation losses (e.g. caused by absorption).

There is another type of refractive index, the group index, which quantifies the reduction in the group velocity. Extreme excursions of the refractive index and particularly the group index can occur near sharp resonances, as are observed in certain quantum optics experiments. This can be related to extremely large or small values of the group velocity (slow light).

Even a negative refractive index is possible for certain photonic metamaterials (usually consisting of metal–dielectric composites), which have been demonstrated first in the microwave region, but begin to become a reality also in the optical domain. Negative refractive index values give rise to a range of intriguing phenomena. For example, refraction at the interface between vacuum and such a material works such that the refracted beam is on the same side of the surface normal as the incident beam.

For waveguides, each propagation mode can be assigned an effective refractive index according to its phase velocity.

See also: refraction, velocity of light, Sellmeier formula, Kramers–Kronig relations, group index, effective refractive index, nonlinear index

How do you rate this article?

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media:


Fiber Optics Software
with Further Improved
User Interface

In RP Fiber Power V6, one can use nice custom forms, which can be
tailored to specific applications.

custom form in RP Fiber Power

Users can make such forms themselves, or get them from RP Photonics within the technical support. The latter is like buying a custom software for every purpose – but without spending a lot of money every time!

Beginners can now get started very easily, even if they need quite special calculations!

– Show all banners –

– Get your own banner! –