RP Photonics logo
RP Photonics
Consulting Software Encyclopedia Buyer's Guide

Short address: rpp-con.com

Dr. Paschotta, the founder of RP Photonics, supports your R & D with his deep expertise. Save time and money with efficient support!

Short address: rpp-soft.com

Powerful simulation software for fiber lasers and amplifiers, resonator design, pulse propagation and multilayer coating design.

Short address: rpp-enc.com

The famous Encyclopedia of Laser Physics and Technology provides a wealth of high-quality scientific and technical information.

Short address: rpp-bg.com

In the RP Photonics Buyer's Guide, you easily find suppliers for photo­nics products. As a supp­lier, you can profit from enhanced entries!

Learn on lasers and photonics every day!
VL logo part of the

Spectral Phase

<<<  |  >>>  |  Feedback

Buyer's Guide

Use the RP Photonics Buyer's Guide to find suppliers for photonics products! You will hardly find a more convenient resource.

Ask RP Photonics for advice on possible methods to measure the spectral phase of the pulses from your laser, and how to correct it.

Definition: the phase of the electric field in the frequency domain

German: spektrale Phase

Categories: optical metrology, light pulses

How to cite the article; suggest additional literature

The electric field of an optical pulse may be described in the time domain or in the frequency domain. In the frequency domain, it can be of interest to know not only the power spectral density (i.e., the intensity spectrum) but also the spectral phase. This is defined as the phase of the electric field in the frequency domain, i.e., the complex phase of the function

Fourier transform

Complete pulse characterization includes measuring not only the optical spectrum, i.e. the squared modulus of E(ν), but also the spectral phase, which contains additional information. This is possible e.g. with the methods of frequency-resolved optical gating (FROG) and spectral phase interferometry for direct electric-field reconstruction (SPIDER, → spectral interferometry).

Food for Thought

Can you find out without doing a calculation, what the effect of a weak Kerr nonlinearity on the spectral phase of a sech2-shaped pulse is? As a hint, use the fact that the effects of group delay dispersion and Kerr nonlinearity can cancel each other in a fundamental soliton pulse, apart from a remaining constant phase shift.

Spectral Phase and Group Delay

The group delay can be defined as the derivative of the spectral phase with respect to angular frequency. This means e.g. that the group delay of all spectral components is zero if the spectral phase is constant. If this is not the case, the group delay may be frequency dependent: different frequency components can then be considered to arrive at different times. However, this kind of interpretation is somewhat problematic, as becomes apparent e.g. when considering that the instantaneous frequency may acquire a certain value more than once within the pulse duration, whereas the group delay for a particular frequency can have only one value. For simple pulse shapes, however, the group delay can be used to describe the position of the pulse maximum of the whole pulse, or of the pulse obtained after a bandpass filter.


It is instructive to consider the changes of spectral phase associated with certain operations:

When the spectral phase is constant or depends linearly on the frequency, the pulse is unchirped, which implies that it is at the transform limit. A chirp in the time domain is associated with a nonlinear frequency dependence of the spectral phase. A dispersive pulse compressor basically has the task of applying spectral phase shifts so that the resulting spectral phase is constant (or changes only linearly with frequency). The deviations from a flat spectral phase are more informative measure of the quality of pulse compression than e.g. just the pulse duration achieved.

The spectral phase can be useful for understanding the phenomenon of spectral interference. For example, consider two identical pulses with a relative time delay T. The difference in spectral phase, which is linear in frequency (see above), causes a spectral modulation. See the article on spectral interferometry for more details.

Modifying the Spectral Phase

There are pulse shapers which can be used to modify the spectral phase of pulses. Such a setup consists of, e.g., a first diffraction grating to separate different frequency components spatially, a liquid crystal modulator for applying position-dependent phase shifts, and a second diffraction grating to recombine the frequency components.

By properly adjusting all the phase values, it is possible e.g. to obtain transform-limited pulses, being as short as the given spectral width allows, or to form longer pulses with complicated temporal shapes. Conditions for such capabilities are that the full optical bandwidth can be processed, and that the spectral resolution (related to the maximum occurring group delay) is sufficiently high. On the other hand, a fast optical modulator is not required.


[1]J. P. Heritage et al., “Picosecond pulse shaping by spectral phase and amplitude manipulation”, Opt. Lett. 10 (12), 609 (1985)
[2]I. A. Walmsley and V. Wong, “Characterization of the electric field of ultrashort optical pulses”, J. Opt. Soc. Am. B 13 (11), 2453 (1996)
[3]C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses”, Opt. Lett. 23 (10), 792 (1998)

(Suggest additional literature!)

See also: chirp, transform limit, pulse characterization, spectral interferometry, pulse compression, double pulses

How do you rate this article?

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media:

regenerative amplifier

Pulse energy from a regenerative amplifier, when the number of resonator round-trips per amplification cycle is varied. Such instabilities (involving several bifurcations) can be well studied with a numerical model.

This diagram has been made with the RP Fiber Power software.

– Show all banners –

– Get your own banner! –