RP Photonics logo
RP Photonics
Encyclopedia
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the
Virtual
Library

The Photonics Spotlight

Signal-to-Noise Ratio and Measurement Bandwidth

Ref.: encyclopedia articles on noise specifications, power spectral density

Even in scientific papers, I encounter fairly frequently the following situation. There is some kind of RF spectrum exhibiting a narrow-band signal and a noise background, and the authors report that the signal is higher than the noise by some number of decibels. However, a measurement bandwidth is not specified. The same happens in situations where there is an optical spectrum with some narrow-band laser line and an ASE background.

The trouble is that the number of these decibels (often interpreted as some signal-to-noise ratio) depends on the measurement bandwidth. If the spectrum displays some kind of power in a certain (possibly not specified) bandwidth, a narrow-band signal (i.e., a signal with a bandwidth well below the measurement bandwidth) will lead to a peak height which is not dependent on the measurement bandwidth. On the other hand, the measurement bandwidth will directly affect the noise level: the larger the measurement bandwidth, the more noise is captured. This means that such kind of signal-to-noise ratio is meaningless if the measurement bandwidth is not specified. Needless to say, meaningless statements shouldn't have a place in scientific papers …

This article is a posting of the Photonics Spotlight, authored by Dr. Rüdiger Paschotta. You may link to this page, because its location is permanent. See also the Encyclopedia of Laser Physics and Technology.

Note that you can also receive the articles in the form of a newsletter.

How do you rate this article?

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent
Comments:

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media:

© Dr. Rüdiger Paschotta, RP Photonics Consulting GmbH, also at Google+     All rights reserved worldwide
arrow

The Transparent Laser

The dream of each laser developer, and not only of each laser scientist: have a transparent laser, where you can look into any components and see e.g.

… and this at any location and time, with arbitrary resolution!

If you had this, finally you could

Absolutely marvelous, but only a dream?!?

Good news: such transparent lasers can be made! See our presentation:

presentation

– Show all banners –

– Get your own banner! –