RP Photonics logo
RP Photonics
Encyclopedia
Consulting Software Encyclopedia Buyer's Guide

Short address: rpp-con.com

Dr. Paschotta, the founder of RP Photonics, supports your R & D with his deep expertise. Save time and money with efficient support!

Short address: rpp-soft.com

Powerful simulation software for fiber lasers and amplifiers, resonator design, pulse propagation and multilayer coating design.

Short address: rpp-enc.com

The famous Encyclopedia of Laser Physics and Technology provides a wealth of high-quality scientific and technical information.

Short address: rpp-bg.com

In the RP Photonics Buyer's Guide, you easily find suppliers for photo­nics products. As a supp­lier, you can profit from enhanced entries!

Learn on lasers and photonics every day!
VL logo part of the
Virtual
Library

Time-of-flight Measurements

<<<  |  >>>  |  Feedback

Buyer's Guide

The ideal place to find suppliers for photonics products: high-quality information, simple and fast, respects your privacy!

5 suppliers for equipment for time-of-flight measurements are listed.

Your are not yet listed? Get your entry!

Definition: distance measurements based on measuring the time of flight of a light pulse

German: Laufzeitmessungen

Categories: methods, optical metrology, light pulses

How to cite the article

Time-of-flight measurements are often used for the measurement of some distance, e.g. with a laser range finder, used e.g. in an airplane, possibly in the form of a scanning laser radar. Here, an apparatus sends out a short optical pulse and measures the time until a reflected portion of the pulse is monitored. The distance is then calculated using the velocity of light. Due to this high velocity, the temporal accuracy must be very high – e.g. 1 ns for a spatial accuracy of 15 cm.

The time-of-flight method is typically used for large distances such as hundreds of meters or many kilometers. Using advanced techniques (involving high-quality telescopes, highly sensitive photodetection, etc.), it is possible to measure e.g. the distance between the Earth and the Moon with an accuracy of a few centimeters, or to obtain a precise profile of a dam. Typical accuracies of simple devices for short distances are a few millimeters or centimeters.

As time-of-flight measurements are preferentially used for large distances, the beam quality of the laser source is crucial. In addition, a telescope can be used to obtain a large beam diameter and an accordingly increased Rayleigh length, i.e. a small beam divergence. The target can be equipped with a retroreflector in order to increase the amount of reflected light. The pulse duration used is usually between 100 ps and a few tens of nanoseconds, as achieved with a Q-switched laser. For large distances, high pulse energies are required. This can raise laser safety issues, particularly if the laser wavelength is not in the eye-safe region. For nanojoule to microjoule pulse energies (as required for moderate distances), it is possible to use a passively Q-switched microchip Er:Yb:glass laser, which can generate fairly short pulses (duration of the order of 1 ns) with pulse energies around 10 μJ in the eye-safe spectral region.

A related method is the phase shift method for distance measurements. Here, a continuously modulated signal instead of separated pulses is used.

Bibliography

[1]M.-C. Amann et al., “Laser ranging: a critical review of usual techniques for distance measurement”, Opt. Eng. 40 (1), 10 (2001)

See also: distance measurements with lasers, phase shift method for distance measurements

How do you rate this article?

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent
Comments:

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you like our website, you may also want to get our newsletters!

arrow

How to Fight Fraud in Science?

We occasionally read about scientific fraud – things like fabricated or manipulated measurement results – which is utterly unfair and also undermines the trust of the public in science and its results.

How to fight that problem?

Unfortunately, the discussion of fraud often misses essential aspects. Our Photonics Spotlight article on science fraud digs deeper. It suggests that the risk of fraud is close to zero where supervisors do a responsible job. Relations to a more widespread problem – corrupt authorship practices – are also identified.

– Show all banners –

– Get your own banner! –