RP Photonics logo
RP Photonics
Encyclopedia
RP Consulting RP Software RP Encyclopedia RP Buyer's Guide
… combined with a great Buyer's Guide!
VLib part of the
Virtual
Library

Waveguide Dispersion

<<<  |  >>>  |  Feedback

Buyer's Guide

Use the RP Photonics Buyer's Guide to find suppliers for photonics products! You will hardly find a more convenient resource.

Definition: chromatic dispersion arising from waveguiding effects

German: Wellenleiterdispersion

Category: fiber optics and waveguides

How to cite the article; suggest additional literature

Waveguide dispersion is chromatic dispersion which arises from waveguide effects: the dispersive phase shifts for a wave in a waveguide differ from those which the wave would experience in a homogeneous medium. The total dispersion is the combination of material dispersion and waveguide dispersion.

The origin of waveguide dispersion can be understood by considering that a guided wave has a frequency-dependent distribution of wave vectors (k vectors), whereas a plain wave (as the reference case) has only a single wave vector, which points exactly in the propagation direction. Note that chromatic dispersion for a given propagation mode of a waveguide is calculated from the frequency dependence of the imaginary part of the so-called propagation constant, which is the overall phase shift per unit length which the guided wave experiences.

Waveguide dispersion is important in waveguides with small effective mode areas. Examples are optical fibers, in particular certain photonic crystal fibers, but also other single-mode fibers as used in, e.g., optical fiber communications. Waveguide dispersion may be tailored via the fiber design to obtain the desired dispersion properties; see e.g. the article on dispersion-shifted fibers. For fibers with large mode areas, waveguide dispersion is normally negligible, and material dispersion is dominant.

Bibliography

[1]J. A. Mores Jr et al., “Efficient calculation of higher-order optical waveguide dispersion”, Opt. Express 18 (19), 19522 (2010)
[2]A. W. Snyder and J. D. Love, Optical Waveguide Theory, Chapman and Hall, London (1983)
[3]R. Paschotta, tutorial on "Passive Fiber Optics", Part 10: Chromatic Dispersion

(Suggest additional literature!)

See also: waveguides, chromatic dispersion, dispersion-shifted fibers

How do you rate this article?

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent
Comments:

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media:

arrow

Traffic on this Website

This website is enormously popular. The page views of the encyclopedia and the buyer's guide in the last 12 months:

MonthPage views
2014-08135'027 
2014-09161'913 
2014-10179'264 
2014-11184'803 
2014-12160'109 
2015-01165'833 
2015-02166'143 
2015-03196'221 
2015-04193'706 
2015-05195'822 
2015-06180'800 
2015-07166'491 

Total: 2'086'132 page views within 12 months.

See also our detailed published data. They are no suprise in the light of the extraordinary Google ranking.

Obviously, it would be a good idea to advertise your photonics products on this site – with enhanced entries in the buyer's guide and with banners at this place here.

– Show all banners –

– Get your own banner! –