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1 History 

Original paper: A. L. Schawlow and C. H. Townes, “Infrared and optical masers”, Phys. Rev. 

112 (6), 1940 (1958): 

 Basic proposal for building lasers (optical masers) 

 Estimate of linewidth in analogy to linewidth of masers. The latter is limited by thermal 

fluctuations; Schawlow and Townes basically replaced Bk T  with h  in the linewidth 

equation. The result is 
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where laser  is the half width at half-maximum linewidth of the laser, c  is the half 

width of the resonances of the laser resonator and outP  is the laser output power. Note that 

this holds only if there are no parasitic resonator losses (see section 3). 

 In 1967, Melvin Lax showed that the linewidth in lasing operation (above threshold) must 

be two times smaller. By taking into account this correction and also converting the 

equation for full width at half maximum (for both linewidth quantities), we arrive at 

http://www.rp-photonics.com/schawlow_townes_linewidth.html
http://www.rp-photonics.com/encyclopedia.html
http://www.rp-photonics.com/encyclopedia.html
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As the derivation by Schawlow and Townes largely builds on previous results, which are not 

well available, it is desirable to have a more comprehensive and complete derivation, which 

can also generalize the results. 

2 Physical Interpretation 

The basic physical process which limits the linewidth is spontaneous emission into the laser 

mode: 

 In each round-trip, some noise amplitude is added to the circulating field. This changes 

both amplitude (power) and phase of the field. 

 Amplitude fluctuations are damped: because of gain saturation, the power must always 

return to values close to the steady-state power. 

 For phase fluctuations, there is no restoring force. Therefore, the phase undergoes a 

random walk. This leads to a phase noise power spectral density 2( )S f f

 , which 

causes a finite linewidth. 

Remarks: 

 Depending on the type of semiclassical picture used, there can also be fluctuations 

associated with the resonator losses. 

 Eq. (1) holds only for four-level single-frequency lasers without amplitude/phase 

coupling and with negligible other noise sources (such as mirror vibrations). 

 Most lasers operate far above the Schawlow-Townes limit, as there are additional 

technical noise sources. 

 For semiconductor lasers, a factor  21   (with   being the linewidth enhancement 

factor of the gain medium) must be added. This is due to amplitude/phase coupling in the 

semiconductor: changes of gain are accompanied by changes of refractive index. 

3 Derivation of Linewidth Formula 

In the following, I give a derivation which does not build on early linewidth formulas for 

(thermally limited) masers, but rather on formulae for quantum noise which I have also used 

for numerical simulations of timing jitter of mode-locked lasers. 

Assume a four-level single-frequency laser without amplitude/phase coupling. The output 

coupler transmission is ocT , and there can be additional (parasitic) resonator losses parl , so that 

the total resonator losses per round trip are tot oc parl T l  . On average, the gain must balance 

the losses: totg l . 

We describe the circulating field with a complex amplitude A , normalized so that the 

intracavity power is 
2

intP A . 
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During each resonator round-trip, the gain medium adds a fluctuating amplitude A  where 

each quadrature component has the variance 

 2
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(according to some basic results of quantum optics) with rtT  being the round-trip time. 

This means that the phase changes by 
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A
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where qA  is the quadrature component perpendicular to A  in the complex plane. 

The resonator losses contribute another noise amplitude with the same variance (and with no 

correlation to the fluctuation induced by the gain), because totg l . 

Therefore, in total the variance of the phase is increased by 
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per round-trip. (We have used the average value of the intracavity power in the dominator, 

which is a good approximation.) 

Therefore, the phase variance grows with time according to 
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It can be shown that a random-walk process with the variance 

 2( ) 2t C t  , (7) 

corresponds to a power spectral density of the phase noise of 
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and this results in the linewidth 

 C   (9) 

of the field. From this, we obtain the laser linewidth 
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so that 
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Although eq. (11) appears to be most practical, for comparison with eq. (1) we relate the 

resonator losses to the FWHM resonator bandwidth: 

 tot
c c

rt
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If there are no parasitic losses, so that tot ocl T , this leads to eq. (2). We thus see that the 

result of the derivation is consistent with the SchawlowTownes result as modified by Lax. 

Another useful result is that the coherence time is 
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This can be used to calculate the autocorrelation of the field: 
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4 Extensions 

4.1 Three-level Laser 

In a three-level laser, there is reabsorption from the ground state population. To obtain the 

same effective gain, we need a correspondingly higher upper-level population. As a 

consequence, we get more noise from spontaneous emission and also noise from the 

reabsorption. 

We can describe the gain as 

 0 reabsg g l   (15) 

where reabsl  is the reabsorption loss in the lasing state and 0g  the gain which we would have 

for this inversion if there were no reabsorption.  

Compared with the situation in a four-level laser with the same gain, the noise contribution is 

increased by the “spontaneous emission factor” 
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(Note that the total resonator losses totl  do not include the reabsorption loss.) 

For example, we have sp 2n  if reabs tot l g l , so that 0g  gets twice as high as it would be 

without the reabsorption effect. 

Note that reabsl  is smaller than the unpumped reabsorption loss reabs,0l , because the ground state 

population of the laser-active ions is reduced. It can be calculated from 
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where 1N  is the ground state population density and totN  is the doping density. 



RP Photonics Consulting GmbH 5 www.rp-photonics.com 

If we call the fully inverted gain fi tot emg N L , this results in 
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4.2 Laser with Amplitude/Phase Coupling 

Particularly from semiconductor lasers it is known that a change of intensity gain coefficient 

g  is related to a change of phase via the linewidth enhancement factor  : 
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This leads to a coupling of amplitude and phase fluctuations. In effect, the power spectral 

density of the phase fluctuations in a single-frequency laser is increased by the factor 21   

(see e.g. C. H. Henry, IEEE J. Quantum Electron. 18 (2), 259 (1982)). The linewidth is 

increased by the same factor and becomes 
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Note that solid-state lasers can also have a significant linewidth enhancement factor, e.g. 

when the gain line is asymmetric or it is a quasi-three-level system. 

In the following, I give a new derivation of this result, because I find Henry’s derivation 

somewhat unclear. The basic idea of my derivation is: 

 Quantum noise from spontaneous emission and losses leads to fluctuations of optical 

power. 

 For low noise frequencies, the gain directly follows fluctuations of the optical power. I do 

not directly base the argument on gain saturation, but rather consider the addition of 

fluctuations to the field as a kind of gain, which (for low frequencies) must be 

compensated by opposite changes of the laser gain. 

 White noise in the field fluctuations leads to white noise of the gain, consequently to 2f   

noise in the optical phase, from which I calculate the contribution to the linewidth. 

Now the details. Any fluctuation A  in the amplitude quadrature amounts to a change 
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of the intracavity optical power. Written in this way, one can consider the addition of the 

fluctuation amplitude as a kind of gain, which for low frequencies must be compensated by 

the opposite change of the laser gain, caused by gain saturation: 
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The optical amplitudes have white noise with the two-sided power spectral density 
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if the effects of quantum fluctuations from gain medium and losses are added. Therefore, we 

have 
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which indicates white noise in the gain. For the instantaneous optical frequency opt  and the 

optical phase   we have the dynamical equation 
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because the optical phase changes by / 2g   per round trip. From this we obtain the power 

spectral density 
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of the optical frequency and 
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of the optical phase, from which we obtain the contribution to the linewidth in the same way 

as in section 3 as 
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Finally, one has to add this contribution to that one of the direct influence of quantum noise 

on the phase fluctuations, since both fluctuations are from different quadrature components 

and thus statistically independent. In total, one obtains 
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which is consistent with Henry’s result. 


