RP Photonics

Encyclopedia … combined with a great Buyer's Guide!

VLib
Virtual
Library

ABCD Matrix

Definition: a 2-by-2 matrix describing the effect of an optical element on a laser beam

German: ABCD-Matrix

Categories: general optics, methods

How to cite the article; suggest additional literature

An ABCD matrix or ray transfer matrix [1] is a 2-by-2 matrix associated with an optical element which can be used for describing the element's effect on a laser beam. It can be used both in ray optics, where geometrical rays are propagated, and for propagating Gaussian beams. The paraxial approximation is always required for ABCD matrix calculations, i.e., the involved beam angles or divergence angles must stay small for the calculations to be accurate.

Ray Optics

Originally, the concept was developed for calculating the propagation of geometric rays with some transverse offset r and offset angle θ from a reference axis (Figure 1). As long as the angles involved are small enough (→ paraxial approximation), there is a linear relation between the r and θ coordinates before and after an optical element. The following equation can then be used for calculating how these parameters are modified by an optical element:

ABCD matrix
ABCD matrix for optical rays
Figure 1: Definition of r and θ before an after an optical system.

where the primed quantities (left-hand side) refer to the beam after passing the optical component. The ABCD matrix is a characteristic of each optical element.

For example, a thin lens with focal length f has the following ABCD matrix:

ABCD matrix of a lens

This shows that the offset r remains unchanged, whereas the offset angle θ experiences a change in proportion to r.

Propagation through free space over a distance d is associated with the matrix

ABCD matrix for free-space propagation

which shows that the angle remains unchanged, whereas the beam offset is increasing or decreasing according to the angle.

Further examples for ABCD matrices are given below.

For situations where beams propagate through dielectric media, it is convenient to use a modified kind of beam vectors, where the lower component (the angle) is multiplied by the refractive index. This can somewhat simplify the ABCD matrices for certain situations.

Propagation of Gaussian Beams

ABCD matrices can also be used for calculating the effect of optical elements on the parameters of a Gaussian beam. A convenient quantity for that purpose is the complex q parameter, which contains information on both the beam radius w and the radius of curvature R of the wavefronts:

q parameter of a Gaussian beam

The following equation shows how the q parameter is modified by an optical element:

ABCD matrix

ABCD Matrices of Important Optical Elements

The following list gives the ABCD matrices of frequently used optical elements.

Air space with length d:

ABCD matrix for free-space propagation

(For propagation in a transparent medium, the length d has to be divided by the refractive index n, if the above mentioned modified definition is used where the lower component (the angle) is multiplied by the refractive index.)

Lens with focal length f (where positive f applies for a focusing lens):

ABCD matrix of a lens

Curved mirror with curvature radius R (>0 for concave mirror), incidence angle θ in the horizontal plane:

ABCD matrix of a curved mirror

with Re = R cos θ in the tangential plane (horizontal direction) and Re = R / cos θ in the sagittal plane (vertical direction).

Duct:

ABCD matrix of a duct

where the radially varying refractive index is:

radially varying refractive index in a duct

Various textbooks (see e.g. Ref. [4]) specify the ABCD matrices for other types of optical components.

Combining Multiple Optical Elements

If a beam propagates through several optical elements (including any air spaces in between), this means that the (θ) vector is subsequently multiplied by various matrices. Instead, a single matrix may be used, which is the matrix product of all the single matrices. Note that the first optical element must be on the right-hand side of that product.

Typical Applications

Some typical applications of the ABCD matrix algorithm are:

  • It is often of interest how a laser beam propagates through some optical setup. Both the geometric path of a ray and the evolution of the beam radius can be calculated.
  • The changes of beam parameters within one complete round trip in a resonator can be described with an ABCD matrix. The transverse resonator modes can then be obtained from the matrix components.
  • An extended algorithm, involving an ABCDEF matrix (a 3-by-3 matrix with some constant components), can be used for calculating the alignment sensitivity of a laser resonator [3].

The ABCD matrix method should not be confused with a different matrix method for calculating the reflection and transmission properties of dielectric multilayer coatings.

Suppliers

The RP Photonics Buyer's Guide contains 3 suppliers for software based on the ABCD matrix algorithm. Among them:

Bibliography

[1]H. Kogelnik and T. Li, “Laser beams and resonators”, Appl. Opt. 5 (10), 1550 (1966)
[2]P. A. Bélanger, “Beam propagation and the ABCD ray matrices”, Opt. Lett. 16 (4), 196 (1991)
[3]O. E. Martínez, “Matrix formalism for dispersive laser cavities”, IEEE J. Quantum Electron. 25 (3), 296 (1989)
[4]A. E. Siegman, Lasers, University Science Books, Mill Valley, CA (1986)

(Suggest additional literature!)

See also: paraxial approximation, Gaussian beams, resonator modes, resonator design, beam pointing fluctuations
and other articles in the categories general optics, methods

How do you rate this article?

Click here to send us your feedback!

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent
Comments:

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you enter any personal data, this implies that you agree with storing it; we will use it only for the purpose of improving our website and possibly giving you a response; see also our declaration of data privacy.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media:

arrow