RP Photonics logo
RP Photonics
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the

Adiabatic Soliton Compression

<<<  |  >>>

Definition: a pulse compression technique based on the adaptation of solitons to slowly varying propagation parameters

German: adiabatische Solitonenkompression

Categories: fiber optics and waveguides, light pulses

How to cite the article; suggest additional literature

Adiabatic soliton compression is a technique for the temporal compression of ultrashort pulses in a fiber. The principle of operation is described in the following. For a fundamental soliton pulse in a fiber, the product of pulse energy and pulse duration is proportional to the group velocity dispersion divided by the nonlinearity of the fiber. Thus, the pulse duration must be reduced if the dispersion is reduced while keeping constant the pulse energy. Significant pulse compression can therefore be obtained by propagating the pulses through a dispersion-decreasing fiber. However, the following conditions must be satisfied:

Interestingly, there are situations where Raman scattering and higher-order dispersion combine in such a way that the pulse compression stays adiabatic, even though each of the mentioned effects separately would lead to severe pulse distortion [5].

Even though the method is elegant and powerful, it suffers from the need to use a dispersion-decreasing fiber. The latter requirement is eliminated by a variant of the method, where the fiber has constant dispersion but contains a laser-active dopant which allows the amplification of the pulses. Here, an increasing pulse energy for constant dispersion also results in temporal compression.

Instead of using a dispersion-decreasing fiber, it is also possible to concatenate (fusion-splice) different fibers with different dispersion values. This may lead to more reproducible results, but as the dispersion does not vary continuously, the compression factor and/or the pulse quality can be compromised.

Generally, adiabatic soliton compression is limited to fairly low pulse energies, since the soliton energies of pulses in fibers cannot be made very high. Therefore, the technique is mainly applied to high repetition rate pulse trains, e.g. in the context of optical fiber communications.


[1]H. H. Kuehl, “Solitons on an axially nonuniform optical fiber”, J. Opt. Soc. Am. B 5 (3), 709 (1988)
[2]K. Smith and L. F. Mollenauer, “Experimental observation of adiabatic compression and expansion of soliton pulses over long fiber paths”, Opt. Lett. 14 (14), 751 (1989)
[3]S. V. Chernikov and P. V. Mamyshev, “Femtosecond soliton propagation in fibers with slowly decreasing dispersion”, J. Opt. Soc. Am. B 8 (8), 1633 (1991)
[4]S. V. Chernikov et al., “Picosecond soliton pulse compressor based on dispersion decreasing fiber”, Electron. Lett. 28, 1842 (1992)
[5]P. V. Mamyshev et al., “Adiabatic compression of Schrödinger solitons due to the combined perturbations of higher-order dispersion and delayed nonlinear response”, Phys. Rev. Lett. 71 (1), 73 (1993)
[6]S. V. Chernikov et al., “Soliton pulse compression in dispersion-decreasing fiber”, Opt. Lett. 18 (7), 476 (1993)
[7]M. L. Quiroga-Teixeiro et al., “Efficient soliton compression by fast adiabatic amplification”, J. Opt. Soc. Am. B 13 (4), 687 (1996)
[8]K. Mori et al., “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fiber with convex dispersion profile”, Electron. Lett. 33, 1806 (1997)
[9]A. Mostofi et al., “Optimum dispersion profile for compression of fundamental solitons in dispersion decreasing fibers”, IEEE J. Quantum Electron. 33 (4), 620 (1997)
[10]K. R. Tamura and M. Nakazawa, “54-fs, 10-GHz soliton generation from a polarization-maintaining dispersion-flattened dispersion-decreasing fiber pulse compressor”, Opt. Lett. 26 (11), 762 (2001)
[11]F. K. Fatemi, “Analysis of nonadiabatically compressed pulses from dispersion-decreasing fiber”, Opt. Lett. 27 (18), 1637 (2002)
[12]M. L. V. Tse et al., “Pulse compression at 1.06 μm in dispersion-decreasing holey fibers”, Opt. Lett. 31 (23), 3504 (2006)
[13]J. Lægsgaard and P. J. Roberts, “Theory of adiabatic pressure-gradient soliton compression in hollow-core photonic bandgap fibers”, Opt. Lett. 34 (23), 3710 (2009)

(Suggest additional literature!)

See also: solitons, pulses, pulse compression, dispersion-decreasing fibers
and other articles in the categories fiber optics and waveguides, light pulses

If you like this article, share it with your friends and colleagues, e.g. via social media: