Encyclopedia … combined with a great Buyer's Guide!

Arrayed Waveguide Gratings

Acronym: AWG

Definition: optical filter or multiplexer devices based on arrays of waveguides

More general term: optical filters

Category: photonic devices

Author:

Cite the article using its DOI: https://doi.org/10.61835/1da

Get citation code: Endnote (RIS) BibTex plain textHTML

An arrayed waveguide grating is a (typically fiber-coupled) device which can separate or combine signals with different wavelengths. It is usually built as part of a planar lightwave circuit (or photonic integrated circuit), where the light coming from an input fiber first enters a multimode waveguide section, then propagates through several single-mode waveguides to a second multimode section, and finally into the output ports. Wavelength filtering is based on an interference effect and the different optical path lengths in the single-mode waveguides: any frequency component of the input propagates through all single-mode waveguides, and the output in any channel results from the superposition (interference) of all these contributions. The wavelength-dependent phase shifts lead to a wavelength-dependent overall throughput for any combination of an input port and an output port.

arrayed waveguide grating
Figure 1: Structure of an arrayed waveguide grating.

Particularly for AWGs with large numbers of channels, a high precision of the fabrication is required for achieving a low channel cross-talk.

AWGs can be realized with different material systems, e.g. based on fused silica (SiO2), indium phosphide (InP), or silicon (Si).

Applications

Arrayed waveguide gratings are mainly applied in optical fiber communication systems, in particular in those based on multi-channel transmission with wavelength division multiplexing (WDM), where individual wavelength channels must be combined or separated. They can be part of more complex photonic integrated circuits, functioning e.g. as WDM data transmitters. An arrayed waveguide grating may also be used for separating the lines in the optical spectrum of a supercontinuum source, or in a pulse shaper for ultrashort pulses.

Bibliography

[1]C. Dragone, “An N × N optical multiplexer using a planar arrangement of two star couplers”, IEEE Photon. Technol. Lett. 3 (9), 812 (1991); https://doi.org/10.1109/68.84502
[2]S. Chandrasekhar et al., “Monolithic eight-wavelength demultiplexed receiver for dense WDM applications”, IEEE Photon. Technol. Lett. 7 (11), 1342 (1995); https://doi.org/10.1109/68.473492
[3]H. Ehlers et al., “Optoelectronic packaging of arrayed-waveguide grating modules and their environmental stability tests”, Optical Fiber Technol. 6, 344 (2000); https://doi.org/10.1006/ofte.2000.0341

(Suggest additional literature!)

See also: optical filters, wavelength division multiplexing

Questions and Comments from Users

Here you can submit questions and comments. As far as they get accepted by the author, they will appear above this paragraph together with the author’s answer. The author will decide on acceptance based on certain criteria. Essentially, the issue must be of sufficiently broad interest.

Please do not enter personal data here; we would otherwise delete it soon. (See also our privacy declaration.) If you wish to receive personal feedback or consultancy from the author, please contact him, e.g. via e-mail.

Spam check:

By submitting the information, you give your consent to the potential publication of your inputs on our website according to our rules. (If you later retract your consent, we will delete those inputs.) As your inputs are first reviewed by the author, they may be published with some delay.

preview

Share this with your friends and colleagues, e.g. via social media:

These sharing buttons are implemented in a privacy-friendly way!