RP Photonics logo
RP Photonics
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the

Beam Parameter Product

<<<  |  >>>  |  Feedback

Buyer's Guide

The ideal place to find suppliers for photonics products: high-quality information, simple and fast, respects your privacy!

13 suppliers for equipment for measuring the beam parameter product are listed.

Your are not yet listed? Get your entry!

Ask RP Photonics for advice on beam quality and related aspects of lasers.

Acronym: BPP

Definition: product of the beam radius in a focus and the far-field beam divergence

German: Strahlparameterprodukt

Category: general optics

Units: mm · mrad

How to cite the article; suggest additional literature

The beam parameter product (BPP) of a laser beam is defined as the product of beam radius (measured at the beam waist) and the beam divergence half-angle (measured in the far field). The usual units are mm mrad (millimeters times milliradians). The BPP is often used to specify the beam quality of a laser beam: the higher the beam parameter product, the lower is the beam quality.

The BPP can also be defined for non-Gaussian beams. In that case, second moments should be used for the definitions of beam radius and divergence. The smallest possible beam parameter product is then achieved with a diffraction-limited Gaussian beam; it is λ / π. For example, the minimum beam parameter product of a 1064-nm beam is ≈ 0.339 mm mrad.

Beam Quality Calculations

Center wavelength:
M2 factor: calc
Beam parameter product: calc
Beam waist radius: calc
Divergence half-angle: calc

After you have modified some values, click a "calc" button to recalculate the field left of it.

beam parameter product vs. M2

Figure 1: Beam parameter product and M2 values of various laser types. Due to the longer wavelength, CO2 lasers have a larger beam parameter product than diffraction-limited 1-μm solid-state lasers, but still compare favorably with lamp-pumped systems.

For non-circular beams, the BPP can be different e.g. in the vertical and horizontal direction.

Note that the BPP remains unchanged when the beam is sent through some non-aberrative optics, such as a thin lens. If that lens generates a focus with smaller beam waist radius, the beam divergence will increase correspondingly. For measuring the BPP, it is thus allowed to form a focus of convenient size, dependent on the equipment used (e.g. a beam profiler) and the available space (which has to extent over several Rayleigh lengths).

Non-ideal optics can “spoil” the beam quality and thus increase the BPP. In some special cases, slight aberrations of an optical element (such as a spherical lens) can somewhat reduce the BPP of a laser beam, if the beam has distortions which can be compensated with that element.

A related, less frequently used quantity is the diameter–divergence product.

See also: beam radius, beam divergence, beam quality, M2 factor, beam profilers

In the RP Photonics Buyer's Guide, 13 suppliers for equipment for measuring the beam parameter product are listed.

How do you rate this article?

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media:


Field Guide on Laser Pulse Generation

Learn a lot on pulse generation with lasers:

FG Laser Pulse Generation

Enjoy a compact booklet, authored by a top expert on laser pulses.

– Show all banners –

– Get your own banner! –