RP Photonics logo
RP Photonics
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the

Blue Lasers

<<<  |  >>>

Definition: lasers emitting blue light

German: blaue Laser

Category: lasers

How to cite the article; suggest additional literature

This article deals with lasers emitting in the blue and violet spectral region, i.e., with a wavelength roughly around 400–500 nm. The choice of laser gain media for such wavelengths is limited, and the achievable performance is typically not as good as in, e.g., the infrared spectral region.

Types of Blue Lasers

The following types of blue lasers are the most common:

For wavelengths below ≈ 400 nm, the eye's sensitivity (i.e. its ability to detect small light levels) sharply declines, and one enters the region of ultraviolet light. (See also the article on ultraviolet lasers.) Note that even for wavelengths around or slightly above 400 nm, the retina can be damaged via photochemical effects even for intensity levels which are not perceived as very bright.

Applications of Blue and Violet Lasers

Blue and violet lasers are used e.g. in interferometers, for laser printing (e.g. exposure of printing plates) and digital photofinishing, data recording (Blu-ray Disc, holographic memory), in laser microscopy, in laser projection displays (as part of RGB sources), in flow cytometry, and for spectroscopic measurements. Data recording appears to be the major driver for the development of blue laser diodes. In most cases, the use of blue and violet lasers is motivated by the relatively short wavelengths, which allows for strong focusing or resolving very fine structures in imaging applications.


 [1]R. W. Wallace and S. E. Harris, “Oscillation and doubling of the 0.946-μm line in Nd3+:YAG”, Appl. Phys. Lett. 15, 111 (1969)
[2]T. Hebert et al., “Blue and green CW upconversion lasing in Er:YLiF4”, Appl. Phys. Lett. 57, 1727 (1990)
[3]T. Hebert et al., “Blue continuous-pumped upconversion lasing in Tm:YLF”, Appl. Phys. Lett. 60, 2592 (1992)
[4]S. Nakamura et al., “InGaN-based multi-quantum-well-structure laser diodes”, Jpn. J. Appl. Phys. 35, L74 (1996)
[5]D. G. Mathews et al., “Blue microchip laser fabricated from Nd:YAG and KNbO3”, Opt. Lett. 21 (3), 198 (1996)
[6]R. Paschotta et al., “230 mW of blue light from a Tm-doped upconversion fibre laser”, IEEE J. Sel. Top. Quantum Electron. 3 (4), 1100 (1997)
[7]M. Ghotbi et al., “High-average-power femtosecond pulse generation in the blue using BiB3O6”, Opt. Lett. 29 (21), 2530 (2004)
[8]Z. Sun et al., “Generation of 4.3-W coherent blue light by frequency-tripling of a side-pumped Nd:YAG laser in LBO crystals”, Opt. Express 12 (26), 6428 (2004)
[9]M. Ghotbi and M. Ebrahim-Zadeh, “990 mW average power, 52% efficient, high-repetition-rate picosecond-pulse generation in the blue with BiB3O6”, Opt. Lett. 30 (24), 3395 (2005)
[10]Q. H. Xue et al., “High-power efficient diode-pumped Nd:YVO4/LiB3O5 457 nm blue laser with 4.6 W of output power”, Opt. Lett. 31 (8), 1070 (2006)
[11]T.-C. Lu et al., “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser”, Appl. Phys. Lett. 92, 141102 (2008)
[12]Z. Quan et al., “13.2 W laser-diode-pumped Nd:YVO4/LBO blue laser at 457 nm”, J. Opt. Soc. Am. B 26 (6), 1238 (2009)
[13]I. Akasaki, “Nobel Lecture: Fascinated journeys into blue light”, Rev. Mod. Phys. 87, 1119 (2015)
[14]H. Amano, “Nobel Lecture: Growth of GaN on sapphire via low-temperature deposited buffer layer and realization of p-type GaN by Mg doping followed by low-energy electron beam irradiation”, Rev. Mod. Phys. 87, 1133 (2015)
[15]S. Nakamura, “Nobel Lecture: Background story of the invention of efficient blue InGaN light emitting diodes”, Rev. Mod. Phys. 87, 1139 (2015)

(Suggest additional literature!)

See also: lasers, green lasers, red lasers, laser diodes, frequency doubling, ultraviolet lasers
and other articles in the category lasers

In the RP Photonics Buyer's Guide, 76 suppliers for blue lasers are listed.

If you like this article, share it with your friends and colleagues, e.g. via social media: