Encyclopedia … combined with a great Buyer's Guide!

Sponsors:     and others

Bulk Lasers

Definition: lasers based on bulk crystals as gain media

More general term: solid-state lasers

More specific terms: end-pumped lasers, side-pumped lasers, rod lasers, slab lasers, thin-disk lasers

German: Bulk-Laser

Category: laser devices and laser physics


How to cite the article; suggest additional literature

URL: https://www.rp-photonics.com/bulk_lasers.html

Q-switched bulk laser
Figure 1: Setup of a Q-switched bulk laser. The used bulk components used are two mirrors, a laser crystal, and the Q switch.

The term bulk laser refers to a solid-state laser with a bulk piece of doped crystal or glass as the gain medium – not something containing a waveguide. Apart from the laser crystal (or glass), the laser resonator contains some laser mirrors and possibly some other optical elements such as a polarizer, a birefringent tuner, a prism, a Q switch or a saturable absorber for mode locking.

The term bulk lasers is used to distinguish such lasers from waveguide lasers and in particular from fiber lasers (= lasers based on fiber optics). In most cases, the laser gain medium is doped either with rare earth ions or transition metal ions, but bulk lasers also include color center lasers.

bulk laser setup
Figure 2: Setup of a bulk laser, containing a diode-pumped laser head (box with blue label), a frequency doubler in a crystal oven and various other optical elements. Source: Cutting Edge Optronics.

Free-space Beam Propagation

As there is no waveguide structure, so that the beam propagates in free space between optical components, the beam radius in the gain medium is essentially determined not by the gain medium, but by the design of the laser resonator. That has important implications:

Air Spaces

The laser resonator of a bulk laser is in most cases formed with discrete laser mirrors placed around the crystal (or glass), with an air space in between. The use of air spaces between mirrors, crystal and possibly other elements also has important implications:

  • It allows the simple insertion of additional optical elements, such as a birefringent tuner or other kind of optical filter, a Q switch for nanosecond pulse generation, or a nonlinear crystal for intracavity frequency doubling.
  • By optimizing the length of such air gaps, in addition to selecting mirrors with certain curvature radii, one can taylor the mode properties of the resonator.
  • Optical elements, particularly laser mirrors, have to be precisely aligned, and that alignment may be lost e.g. due to thermal drifts or mechanical vibrations.
  • Dust particles or organic matter in the air may be deposited on laser mirrors and other components, particularly when high optical intensities and/or short wavelengths are involved. For long-term reliable operation, the laser housing may therefore have to be sealed.

In many cases, the mirrors and other optical components are attached to adjustable mounts, where two or three micrometer screws allow for precise angular adjustments. In many industrial lasers and certain mass-produced OEM laser modules, these adjustable mounts are replaced with fixed mounts, which can be more robust (also less sensitive to temperature drifts) and cost-effective. Optical components can be soldered to their mounts, leading to very stable setups.

It is also possible to use a laser crystal with a highly reflecting dielectric mirror coating on one side, which serves as a resonator end mirror. There are also monolithic solid-state lasers where the beam path is entirely inside the crystal.

Comparison with Other Laser Types

Tentatively, bulk lasers and amplifiers are preferable for devices operating with high peak power, whereas low-threshold and high-gain operation is more easily achieved with waveguide lasers and waveguide amplifiers. Also, bulk lasers are more flexible e.g. in laboratory setups, as it is comparatively easy to add or exchange optical elements, whereas waveguide-type lasers are possibly cheaper to manufacture.

See also: solid-state lasers, laser crystals, laser glasses, fiber lasers, fiber lasers versus bulk lasers, rare-earth-doped laser gain media, transition-metal-doped laser gain media

Questions and Comments from Users

Here you can submit questions and comments. As far as they get accepted by the author, they will appear above this paragraph together with the author’s answer. The author will decide on acceptance based on certain criteria. Essentially, the issue must be of sufficiently broad interest.

Please do not enter personal data here; we would otherwise delete it soon. (See also our privacy declaration.) If you wish to receive personal feedback or consultancy from the author, please contact him, e.g. via e-mail.

Your question or comment:

Spam check:

  (Please enter the sum of thirteen and three in the form of digits!)

By submitting the information, you give your consent to the potential publication of your inputs on our website according to our rules. (If you later retract your consent, we will delete those inputs.) As your inputs are first reviewed by the author, they may be published with some delay.


Share this with your friends and colleagues, e.g. via social media:

These sharing buttons are implemented in a privacy-friendly way!

Code for Links on Other Websites

If you want to place a link to this article in some other resource (e.g. your website, social media, a discussion forum, Wikipedia), you can get the required code here.

HTML link on this article:

<a href="https://www.rp-photonics.com/bulk_lasers.html">
Article on Bulk lasers</a>
in the <a href="https://www.rp-photonics.com/encyclopedia.html">
RP Photonics Encyclopedia</a>

With preview image (see the box just above):

<a href="https://www.rp-photonics.com/bulk_lasers.html">
<img src="https://www.rp-photonics.com/previews/bulk_lasers.png"
alt="article" style="width:400px"></a>

For Wikipedia, e.g. in the section "==External links==":

* [https://www.rp-photonics.com/bulk_lasers.html
article on 'Bulk lasers' in the RP Photonics Encyclopedia]