Encyclopedia … combined with a great Buyer's Guide!

Sponsorship opportunity: support this popular resource, which serves the whole photonics community, and get recognition!


Definition: resonators for light (or for microwaves)

Alternative term: resonators

German: Kavitäten, Resonatoren

Categories: general optics, optical resonators

How to cite the article; suggest additional literature


Optical resonators are often called cavities. This term has been taken over from microwave technology, where resonators really look like closed cavities, whereas optical resonators normally have an “open” kind of setup, with reflecting surface only at few locations. That difference in geometry is related to the fact that optical resonators are usually very large compared with the optical wavelength, whereas microwave cavities are often not much longer than a wavelength, so that diffraction effects are much stronger.

Only so-called optical microcavities have dimensions in the micrometer or even sub-micrometer regime, and can tightly enclose a light field in all directions. Microcavities can be realized e.g. with tiny semiconductor or glass structures, such as microtoroids, or as defect structures in photonic crystals.

Even though the term “cavity” is often not completely appropriate, as explained above, many related terms are based on it. Examples are laser cavities (laser resonators), cavity modes (resonator modes), cavity dumping and cavity design (resonator design).

The two basic types of optical cavities are:

The article on optical resonators contains more details.

See also: optical resonators, resonator design, resonator modes, stability zones of optical resonators, reference cavities, free spectral range, finesse, bandwidth, Q factor
and other articles in the categories general optics, optical resonators

How do you rate this article?

Click here to send us your feedback!

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you enter any personal data, this implies that you agree with storing it; we will use it only for the purpose of improving our website and possibly giving you a response; see also our declaration of data privacy.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media: