Encyclopedia … combined with a great Buyer's Guide!

Sponsoring this encyclopedia:     and others

Chromium-doped Gain Media

Definition: laser gain media doped with chromium ions

German: Chrom-dotierte Verstärkermedien

Categories: optical materials, lasers

How to cite the article; suggest additional literature


Chromium (chemical symbol: Cr) is a chemical element belonging to the group of transition metals. Chromium ions of different charge states are used as laser-active dopants of gain media:

Due to the strong electron–phonon interaction in such gain media, chromium-doped lasers are called vibronic lasers and have a large gain bandwidth.

Note that some chromium-doped crystals, in particular Cr4+:YAG, are also used as saturable absorbers in Q-switched lasers.


The RP Photonics Buyer's Guide contains 14 suppliers for chromium-doped gain media.


[1]T. H. Maiman, “Stimulated optical radiation in ruby”, Nature 187, 194 (1960), doi:10.1038/187493a0
[2]R. J. Collins et al., “Coherence, narrowing, directionality, and relaxation oscillations in the light emission from ruby”, Phys. Rev. Lett. 5 (7), 303 (1960), doi:10.1103/PhysRevLett.5.303
[3]D. Roess, “Analysis of room temperature CW ruby lasers”, IEEE J. Quantum Electron. 2 (4), 208 (1966), doi:10.1109/JQE.1966.1073937
[4]J. Walling et al., “Tunable CW alexandrite laser”, IEEE J. Quantum Electron. 16 (2), 120 (1980), doi:10.1109/JQE.1980.1070451
[5]J. Walling et al., “Tunable alexandrite lasers: Development and performance”, JSTQE 21 (10), 1568 (1985), doi:10.1109/JQE.1985.1072544
[6]V. Petrivevic et al., “Laser action in chromium-doped forsterite”, Appl. Phys. Lett. 52, 1040 (1988), doi:10.1063/1.99203
 [7]S. A. Payne et al., “LiCaAlF6:Cr3+: a promising new solid-state laser material”, IEEE J. Quantum Electron. 24 (11), 2243 (1988), doi:10.1109/3.8567
[8]S. A. Payne et al., “Optical spectroscopy of the new laser materials, LiSrAlF6:Cr3+ and LiCaAlF6:Cr3+”, J. Lumin. 44, 167 (1989), doi:10.1016/0022-2313(89)90052-5
[9]R. Scheps, “Cr-doped solid-state lasers pumped by visible laser diodes”, Opt. Mater. 1, 1 (1992), doi:10.1016/0925-3467(92)90011-B
[10]M. J. P. Dymott et al., “All-solid-state actively mode-locked Cr:LiSAF laser”, Opt. Lett. 19 (9), 634 (1994), doi:10.1364/OL.19.000634
 [11]Cr. R. Pollock et al., “Cr4+ lasers: present performance and prospects for new host lattices”, IEEE Sel. Top. Quantum Electron. 1 (1), 62 (1995), doi:10.1109/2944.468370
[12]D. Kopf et al., “1.1-W cw Cr:LiSAF laser pumped by a 1-cm diode array”, Opt. Lett. 22 (2), 99 (1997), doi:10.1364/OL.22.000099
 [13]R. H. Page et al., “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers”, IEEE J. Quantum Electron. 33 (4), 609 (1997), doi:10.1109/3.563390
[14]D. Kopf et al., “High-average-power diode-pumped femtosecond Cr:LiSAF lasers”, Appl. Phys. B 65, 235 (1997), doi:10.1007/s003400050269
 [15]J. M. Hopkins et al., “Efficient, low-noise, SESAM-based femtosecond Cr3+:LiSrAlF6 laser”, Opt. Commun. 154, 54 (1998), doi:10.1016/S0030-4018(98)00312-5
 [16]T. J. Carrig et al., “Mode-locked Cr2+:ZnSe laser”, Opt. Lett. 25 (3), 168 (2000), doi:10.1364/OL.25.000168
 [17]D. J. Ripin et al., “Generation of 20-fs pulses by a prismless Cr4+:YAG laser”, Opt. Lett. 27 (1), 61 (2002), doi:10.1364/OL.27.000061
 [18]P. Wagenblast et al., “Diode-pumped 10-fs Cr3+:LiCAF laser”, Opt. Lett. 28 (18), 1713 (2003), doi:10.1364/OL.28.001713
[19]A. Isemann and C. Fallnich, “High-power colquiriite lasers with high slope efficiencies pumped by broad-area laser diodes”, Opt. Express 11 (3), 259 (2003), doi:10.1364/OE.11.000259
[20]E. Sorokin et al., “Ultrabroadband infrared solid-state lasers”, IEEE J. Sel. Top. Quantum Electron. 11 (3), 690 (2005) (a review mainly concerning Cr2+ and Cr4+ lasers)
 [21]M. Sharonov et al., “Near-infrared laser operation of Cr3+ centers in chromium-doped LiInGeO4 and LiScGeO4 crystals”, Opt. Lett. 30 (8), 851 (2005), doi:10.1364/OL.30.000851
 [22]U. Demirbas and A. Sennaroglu, “Intracavity-pumped Cr2+:ZnSe laser with ultrabroad tuning range between 1880 and 3100 nm”, Opt. Lett. 31 (15), 2293 (2006), doi:10.1364/OL.31.002293
[23]M. Sharonov et al., “Continuous tunable laser operation in both the 1.31 and 1.55 μm telecommunication windows in LiIn(Si/Ge)O4 olivines doped with trivalent chromium”, Opt. Lett. 32 (24), 3489 (2007), doi:10.1364/OL.32.003489
[24]S. B. Mirov et al., “Recent progress in transition-metal-doped II–VI mid-IR lasers”, JSTQE 13 (3), 810 (2007), doi:10.1109/JSTQE.2007.896634
 [25]A. Fuerbach et al., “Direct diode-pumped laser operation of Cr3+- doped LiInGeO4 crystals”, Opt. Express 15 (24), 16097 (2007), doi:10.1364/OE.15.016097
 [26]U. Demirbas et al., “Highly efficient, low-cost femtosecond Cr3+:LiCAF laser pumped by single-mode diodes”, Opt. Lett. 33 (6), 590 (2008), doi:10.1364/OL.33.000590
 [27]S. Mirov et al., “Progress in Cr2+ and Fe2+ doped mid-IR laser materials”, Laser & Photon. Rev. 4 (1), 21 (2010), doi:10.1364/OME.1.000898
[28]N. Nagl et al., “Directly diode-pumped, Kerr-lens mode-locked, few-cycle Cr:ZnSe oscillator”, Opt. Express 27 (17), 24445 (20199), doi:10.1364/OE.27.024445

(Suggest additional literature!)


If you like this article, share it with your friends and colleagues, e.g. via social media: