RP Photonics logo
RP Photonics
Encyclopedia
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the
Virtual
Library

Chromium-doped Gain Media

<<<  |  >>>  |  Feedback

Buyer's Guide

The ideal place to find suppliers for photonics products: high-quality information, simple and fast, respects your privacy!

16 suppliers for chromium-doped gain media are listed.

Your are not yet listed? Get your entry!

Ask RP Photonics for advice on how to select the crystal material and dimensions, where to buy, your detailed laser design, etc.

Definition: laser gain media doped with chromium ions

German: chromdotierte Verstärkermedien

Categories: lasers, optical materials

How to cite the article; suggest additional literature

Chromium (chemical symbol: Cr) is a chemical element belonging to the group of transition metals. Chromium ions of different charge states are used as laser-active dopants of gain media:

Due to the strong electron–phonon interaction in such gain media, chromium-doped lasers are called vibronic lasers and have a large gain bandwidth.

Note that some chromium-doped crystals, in particular Cr4+:YAG, are also used as saturable absorbers in Q-switched lasers.

Bibliography

[1]T. H. Maiman, “Stimulated optical radiation in ruby”, Nature 187, 194 (1960)
[2]R. J. Collins et al., “Coherence, narrowing, directionality, and relaxation oscillations in the light emission from ruby”, Phys. Rev. Lett. 5 (7), 303 (1960)
[3]D. Roess, “Analysis of room temperature CW ruby lasers”, IEEE J. Quantum Electron. QE-2, 208 (1966)
[4]J. Walling et al., “Tunable CW alexandrite laser”, IEEE J. Quantum Electron. QE-16, 120 (1980)
[5]J. Walling et al., “Tunable alexandrite lasers: Development and performance”, IEEE J. Sel. Top. Quantum Electron. 21 (10), 1568 (1985)
[6]V. Petrivevic et al., “Laser action in chromium-doped forsterite”, Appl. Phys. Lett. 52, 1040 (1988)
 [7]S. A. Payne et al., “LiCaAlF6:Cr3+: a promising new solid-state laser material”, IEEE J. Quantum Electron. 24 (11), 2243 (1988)
[8]S. A. Payne et al., “Optical spectroscopy of the new laser materials, LiSrAlF6:Cr3+ and LiCaAlF6:Cr3+”, J. Lumin. 44, 167 (1989)
[9]R. Scheps, “Cr-doped solid-state lasers pumped by visible laser diodes”, Opt. Mater. 1, 1 (1992)
[10]M. J. P. Dymott et al., “All-solid-state actively mode-locked Cr:LiSAF laser”, Opt. Lett. 19 (9), 634 (1994)
 [11]Cr. R. Pollock et al., “Cr4+ lasers: present performance and prospects for new host lattices”, IEEE Sel. Top. Quantum Electron. 1 (1), 62 (1995)
[12]D. Kopf et al., “1.1-W cw Cr:LiSAF laser pumped by a 1-cm diode array”, Opt. Lett. 22 (2), 99 (1997)
 [13]R. H. Page et al., “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers”, IEEE J. Quantum Electron. 33 (4), 609 (1997)
[14]D. Kopf et al., “High-average-power diode-pumped femtosecond Cr:LiSAF lasers”, Appl. Phys. B 65, 235 (1997)
 [15]J. M. Hopkins et al., “Efficient, low-noise, SESAM-based femtosecond Cr3+:LiSrAlF6 laser”, Opt. Commun. 154, 54 (1998)
 [16]T. J. Carrig et al., “Mode-locked Cr2+:ZnSe laser”, Opt. Lett. 25 (3), 168 (2000)
 [17]D. J. Ripin et al., “Generation of 20-fs pulses by a prismless Cr4+:YAG laser”, Opt. Lett. 27 (1), 61 (2002)
 [18]P. Wagenblast et al., “Diode-pumped 10-fs Cr3+:LiCAF laser”, Opt. Lett. 28 (18), 1713 (2003)
[19]A. Isemann and C. Fallnich, “High-power colquiriite lasers with high slope efficiencies pumped by broad-area laser diodes”, Opt. Express 11 (3), 259 (2003)
[20]E. Sorokin et al., “Ultrabroadband infrared solid-state lasers”, IEEE J. Sel. Top. Quantum Electron. 11 (3), 690 () (a review mainly concerning Cr2+ and Cr4+ lasers)
 [21]M. Sharonov et al., “Near-infrared laser operation of Cr3+ centers in chromium-doped LiInGeO4 and LiScGeO4 crystals”, Opt. Lett. 30 (8), 851 (2005)
 [22]U. Demirbas and A. Sennaroglu, “Intracavity-pumped Cr2+:ZnSe laser with ultrabroad tuning range between 1880 and 3100 nm”, Opt. Lett. 31 (15), 2293 (2006)
[23]M. Sharonov et al., “Continuous tunable laser operation in both the 1.31 and 1.55 μm telecommunication windows in LiIn(Si/Ge)O4 olivines doped with trivalent chromium”, Opt. Lett. 32 (24), 3489 (2007)
[24]S. B. Mirov et al., “Recent progress in transition-metal-doped II–VI mid-IR lasers”, IEEE J. Sel. Top. Quantum Electron. 13 (3), 810 ()
 [25]A. Fuerbach et al., “Direct diode-pumped laser operation of Cr3+- doped LiInGeO4 crystals”, Opt. Express 15 (24), 16097 (2007)
 [26]U. Demirbas et al., “Highly efficient, low-cost femtosecond Cr3+:LiCAF laser pumped by single-mode diodes”, Opt. Lett. 33 (6), 590 (2008)
 [27]S. Mirov et al., “Progress in Cr2+ and Fe2+ doped mid-IR laser materials”, Laser & Photon. Rev. 4 (1), 21 (2010)

(Suggest additional literature!)

How do you rate this article?

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent
Comments:

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media:

arrow

Fiber Optics Software
with Further Improved
User Interface

In RP Fiber Power V6, one can use nice custom forms, which can be
tailored to specific applications.

custom form in RP Fiber Power

Users can make such forms themselves, or get them from RP Photonics within the technical support. The latter is like buying a custom software for every purpose – but without spending a lot of money every time!

Beginners can now get started very easily, even if they need quite special calculations!

– Show all banners –

– Get your own banner! –