RP Photonics logo
RP Photonics
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the

Cooperative Lasing

<<<  |  >>>

Definition: the phenomenon that laser action at one wavelength can facilitate lasing at another wavelength

German: kooperatives Lasen

Category: lasers

How to cite the article; suggest additional literature

cooperative lasing

Figure 1: An energy level scheme, where cooperative lasing on transition 2 supports lasing on transition 1.

There are level schemes of laser gain media where a laser transition is difficult to operate because the lower laser level has a high lifetime – possibly higher than that of the upper laser level. In such a situation, ions can accumulate in the lower laser level, thus stopping laser action soon after it started (→ self-terminating laser transitions). This can occur e.g. in some erbium- or thulium-doped heavy metal glasses (e.g. Er:ZBLAN, see also fluoride fibers). The problem can affect amplifiers in the same way as lasers.

Cooperative lasing (also called cascade lasing) constitutes one of several possibilities for solving this problem. Here, the lower laser level is depopulated by laser action on an additional laser transition to a still lower-lying energy level. This can be achieved by making the laser resonator so that it has low optical round-trip losses also at the wavelength of the additional laser transition. Ref. [3] presents an example, where cooperative lasing has permitted the operation of a fiber amplifier at 1.49 μm. Similarly, cooperative lasing has been applied to holmium [1] and erbium [2, 4] lasers.


[1]M. C. Brierley et al., “Lasing at 2.08μm and 1.38μm in a holmium doped fluoro-zirconate fibre laser”, Electron. Lett. 245 (9), 539 (1988)
[2]M. Pollnau et al., “Three-transition cascade erbium laser at 1.7, 2.7, and 1.6 μm”, Opt. Lett. 22 (9), 612 (1997)
 [3]S. Tessarin et al., “Tm3+-doped ZBLAN fibre amplifier at 1.49 μm with co-operative lasing at 1.88 μm”, Electron. Lett. 41 (16), 23 (2005)
[4]S. D. Jackson, “High-power erbium cascade fibre laser”, Electron. Lett. 45 (16), 830 (2009)

(Suggest additional literature!)

See also: self-terminating laser transitions, laser transitions, lasers, fiber lasers, lower-state lifetime
and other articles in the category lasers

If you like this article, share it with your friends and colleagues, e.g. via social media: