RP Photonics

Encyclopedia … combined with a great Buyer's Guide!

VLib
Virtual
Library

Differential Mode Delay

Acronym: DMD

Definition: the range of time delay values for signals in a telecom fiber

Categories: lightwave communications, fiber optics and waveguides, light pulses

How to cite the article; suggest additional literature

The group velocities of different modes in a multimode fiber are generally different, resulting in mode-dependent group delays for a given length of fiber. This phenomenon of intermodal dispersion is generally a limiting factor for the achievable transmission bandwidth (data rate) in optical fiber communications as far as multimode fibers are used.

For quantifying intermodal dispersion in telecom fibers, one usually specifies the differential mode delay (sometimes also called differential modal delay or differential group delay). This is often essentially understood as the difference between the maximum and minimum time delay (group delay) of a short signal pulse within a certain length of the fiber under test. It must be measured under carefully standardized conditions, e.g. using bandwidth-limited ultrashort pulses with a certain pulse duration well below the DMD result. The pulses should be in a diffraction-limited beam at a certain optical center wavelength, and the time delay should be measured for a range of radial positions of the input beam across the fiber core. Special DMD analyzer tools have been developed for such measurements.

In some cases, the difference in mode delays between two particular modes is considered. In such cases, positive and negative results are possible; indeed, one can design fibers where e.g. the LP11 mode is a higher or lower group velocity than the LP01 mode, or that difference may even change sign due to uncontrolled variations of fiber parameters in the fiber fabrication.

For constant fiber properties along the whole length, the total difference in group delays is proportional to the fiber length. Therefore, the differential mode delay is often specified in picoseconds per kilometer (ps/km), for example. Its value can substantially depend on the optical wavelength.

Graded-index fibers can be optimized for a small differential mode delay, which however is usually achieved only within a quite limited wavelength range. This limits the application of wavelength division multiplexing. There are special wideband multimode fibers, however, where a low differential mode delay is achieved over a larger wavelength range with the width of e.g. 100 nm.

Typical differential group delays of few-mode fibers with step-index profile are of the order of several picoseconds per meter (ps/m), while graded-index fibers can be made with differential group delays far below 1 ps/m, in some cases even well below 0.1 ps/m = 100 ps/km.

A minimized differential mode delay is not ideal for all applications. For example, intermodal nonlinear effects such as cross-phase modulation can be more strongly disturbing in fiber-optic telecom systems based on fibers with low differential mode delay. In some cases, one uses sequences of fibers having opposite signs of differential mode delay, so that the local DMD is relatively large, and nevertheless the total difference in group delay is over long transmission line are relatively small.

See also: intermodal dispersion, group velocity, group delay, multimode fibers, few-mode fibers, telecom fibers, graded-index fibers
and other articles in the categories lightwave communications, fiber optics and waveguides, light pulses

How do you rate this article?

Click here to send us your feedback!

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent
Comments:

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you enter any personal data, this implies that you agree with storing it; we will use it only for the purpose of improving our website and possibly giving you a response; see also our declaration of data privacy.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media:

arrow