RP Photonics

Encyclopedia … combined with a great Buyer's Guide!


Diode-pumped Lasers

<<<  |  >>>

Acronym: DPSSL = diode-pumped solid-state laser

Definition: solid-state lasers which are pumped with laser diodes

German: diodengepumpte Laser

Category: lasers

How to cite the article; suggest additional literature

Virtually all optically pumped lasers fall into one of two categories:

This article treats the latter category, for which the term all-solid-state lasers is also used.

Types of Diode-pumped Lasers

Most diode-pumped lasers are solid-state lasers (DPSSL = DPSS lasers = diode-pumped solid-state lasers). These are either bulk lasers, using some kind of laser crystal or bulk piece of glass, or fiber lasers (although the term DPSSL is less common for fiber lasers). Both categories span a range of output powers from a few milliwatts to multiple kilowatts (→ high-power lasers).

Less common are optically pumped semiconductor lasers (particularly VECSELs = vertical external cavity surface-emitting lasers), and there are also some relatively exotic types of diode-pumped gas lasers, e.g. alkali vapor lasers.

Types of Laser Diodes for Diode Pumping

There are different types of laser diodes which can be used for diode pumping:

In most cases, the pump diodes are operated continuously. This applies to all continuous-wave and mode-locked lasers, and also to many Q-switched lasers. However, quasi-continuous-wave operation with higher peak power for limited time intervals (e.g. 100 μs) is sometimes used for Q-switched lasers with a high pulse energy and low pulse repetition rate.

Depending on the type of laser diode, different kinds of pump optics are used. It is also possible to use fiber-coupled diode lasers, which make it possible to separate the actual laser head from another package containing the pump diodes, so that the laser head can become very compact.

Advantages of Diode Pumping

The main advantages of diode pumping are:


The benefits of diode pumping have lead to amazing achievements. Some examples are:


In the early years of diode pumping, the output powers achievable were very limited – smaller than those of lamp-pumped lasers. In the meantime, however, high-power diode bars and diode stacks have become very powerful, and the highest output powers are now usually achieved with diode pumping.

The main disadvantage of diode pumping (as compared with lamp pumping) is the significantly higher cost per watt of pump power. This is severe for high powers. For this reason, lamp pumping is still used in cases where high powers are needed, particularly when the power is used only for short times. For example, lamp-pumped Q-switched Nd:YAG lasers are still widely used for laser marking, and will not soon be replaced with diode-pumped lasers.

Laser diodes are electrically less robust than discharge lamps. They may e.g. be quickly destroyed by excessive drive currents, or by electrostatic discharges. In conjunction with properly designed electronics, however, this should not happen. Problems can also arise from optical feedback.


Diode-pumped solid-state lasers have a very wide range of applications. Indeed, they are used in all of the areas mentioned in the article on laser applications.


The RP Photonics Buyer's Guide contains 58 suppliers for diode-pumped lasers. Among them:


 [1]R. J. Keys, “Injection luminescent pumping of CaF2:U3+ with GaAs diode lasers”, Appl. Phys. Lett. 4, 50 (1964) (first diode-pumped laser)
[2]R. L. Byer, “Diode laser-pumped solid-state lasers”, Science 239, 742 (1988)
[3]D. W. Hughes and J. R. M. Barr, “Laser diode pumped solid state lasers”, J. Phys. D: Appl. Phys. 25 (4), 563 (1992)
[4]C. A. Wang and S. H. Groves, “New materials for diode laser pumping of solid-state lasers”, IEEE J. Quantum Electron. 28 (4), 942 (1992)
[5]D. C. Hanna and W. A. Clarkson, “A review of diode-pumped lasers”, in Advances in Lasers and Applications (eds. D. M. Finlayson and B. Sinclair), Taylor & Francis, New York (1999)
[6]W. Koechner, Solid-State Laser Engineering, 6th edn., Springer, Berlin (2006)

(Suggest additional literature!)

See also: lasers, laser crystals, solid-state lasers, all-solid-state lasers, lamp-pumped lasers, laser diodes, end pumping, side pumping, high-power lasers, rod lasers, slab lasers, YAG lasers, fiber lasers, upconversion lasers, gain media
and other articles in the category lasers

Dr. R. Paschotta

This encyclopedia is authored by Dr. RĂ¼diger Paschotta, the founder and executive of RP Photonics Consulting GmbH. Contact this distinguished expert in laser technology, nonlinear optics and fiber optics, and find out how his technical consulting services (e.g. product designs, problem solving, independent evaluations, or staff training) and software could become very valuable for your business!

If you like this article, share it with your friends and colleagues, e.g. via social media: