Encyclopedia … combined with a great Buyer's Guide!

Faraday Mirrors

Author: the photonics expert

Acronym: FRM

Definition: the combination of a Faraday rotator and a mirror

Alternative terms: Faraday rotator mirrors are reflectors where the polarization states of input and output are always orthogonal, at least within some wavelength range. They are available in bulk-optical and fiber-optic form.

Categories: article belongs to category general optics general optics, article belongs to category photonic devices photonic devices

DOI: 10.61835/jx4   Cite the article: BibTex plain textHTML

Faraday mirror

A Faraday mirror (or Faraday rotator mirror) is made by combining a Faraday rotator (for 45° rotation) with a mirror. Light hitting such a reflector device will thus first pass through the Faraday rotator, then be reflected at the mirror, and finally pass the Faraday rotator a second time (see Fig. 1).

Assuming that the Faraday rotator applies a single-pass rotation by 45° (which can be approximately achieved within a limited wavelength range), the polarization state at the output will always be orthogonal to that at the input:

  • If the initial polarization is linear, the output polarization will also be linear, but with an orthogonal direction: rotated twice by 45°, in total 90°.
  • If the initial polarization is circular, the output polarization will be circular with the opposite sense of rotation. (In that situation, the same would occur even without the Faraday rotator.)

The major imperfection of those devices is a double-pass rotation which deviates from exactly 90°, apart from the insertion loss.

Application in Double-pass Configurations

Interestingly, the orthogonality between input and output polarization is still obtained when another optical element is added to the Faraday mirror, which may introduce birefringence with an arbitrary amount and birefringence axis. For example, that can be a laser crystal for amplifying the beam (see Figure 2). One then obtains a double-pass amplifier where the output can be separated from the input with a polarizer, accepting only a minimum amount of loss. This works better than using a Faraday isolator (with an output port for reflected light), an amplifier and an ordinary mirror, where birefringence in the amplifier may modify the polarization state such that some of the light will consequently be lost at the polarizer.

double-pass amplifier with Faraday mirror
Figure 1: Setup of a double-pass laser amplifier. The Faraday mirror on the right side ensures that the polarization state of light is not distorted after a double pass through the amplifier medium.

Note, however, that the perfect polarization orthogonality may be lost if we have a substantial influence of diffraction in the optical setup. Therefore, one should work with collimated beams, having a low beam divergence. Nonlinear polarization rotation can also not be compensated.

Fiber-optic Faraday Mirrors

There are also Faraday mirrors in fiber optics, where the input and output light goes through an optical fiber – usually, a single-mode fiber. It can be a “fiber-optic pigtail”, but versions with a fiber connector (e.g. FC/PC or FC/APC) are also available.

Fiber-optic Faraday mirrors can exhibit a low insertion loss of well below 1 dB, although some devices exhibit higher losses of several decibels.

Another important specification is the precision of polarization rotation. Some devices achieve a rotation angle accuracy of e.g. 1° over a 30-nm wavelength range.

Fiber-optic Faraday mirrors are used for similar purposes as bulk-optic devices, often for exploiting the compensation of random birefringence in some length of passive or active fiber. Applications are in different fields of fiber optic, for example in optical fiber communications, fiber amplifiers, measurement technology with fiber interferometers and fiber-optic sensors.

More to Learn

Encyclopedia articles:

Suppliers

The RP Photonics Buyer's Guide contains ten suppliers for Faraday rotator mirrors. Among them:

Questions and Comments from Users

Here you can submit questions and comments. As far as they get accepted by the author, they will appear above this paragraph together with the author’s answer. The author will decide on acceptance based on certain criteria. Essentially, the issue must be of sufficiently broad interest.

Please do not enter personal data here. (See also our privacy declaration.) If you wish to receive personal feedback or consultancy from the author, please contact him, e.g. via e-mail.

Spam check:

By submitting the information, you give your consent to the potential publication of your inputs on our website according to our rules. (If you later retract your consent, we will delete those inputs.) As your inputs are first reviewed by the author, they may be published with some delay.

preview

Share this with your network:

Follow our specific LinkedIn pages for more insights and updates: