RP Photonics logo
RP Photonics
Modellierungs-Software
Technische Beratung zu Lasern, nichtlineare Optik, Faseroptik etc.
profitieren Sie vom Wissen und der Erfahrung eines Top-Experten!
Leistungsfähige Simulations- und Design-Software.
Nutzen Sie Computermodelle, um Ihre Laser umfassend zu verstehen!
Erfolg resultiert aus Verständnis – in der Wissenschaft wie in der industriellen Entwicklung.
Die berühmte Encyclopedia of Laser Physics and Technology – online kostenlos verfügbar!
Der ideale Ort, um Anbieter für Photonik-Produkte zu finden.
Anbieter: stellen Sie sicher, dass Ihre Produkte hier gezeigt werden!
für die effiziente Laserentwicklung und Forschung
Diese Seite gibt Ihnen einen Überblick über unsere Softwareprodukte.
RP Fiber Calculator ist ein praktisches Tool für Berechnungen zu optischen Fasern.
RP Fiber Power ist ein extrem flexibles Tool für das Design und die Optimierung für Faserlasern, Verstärkern und auch passiven Fasern.
RP Resonator ist ein besonders flexibles Tool für die Entwicklung von Laserresonatoren.
RP ProPulse kann die Pulsausbreitung in modengekoppelten Lasern und synchron gepumpten OPOs simulieren.
RP Coating ist ein besonders flexibles Designwerkzeug für dielektrische Vielschichtsysteme.
RP Q-switch kann die Entwicklung optischer Leistungen in gütegeschalteten Lasern simulieren.
Die meisten unserer Softwareprodukte bieten eine leistungsfähige Skriptsprache, die Ihnen ein ungewöhnliches Maß von Flexibilität gibt.
Hier erfahren Sie über die Software Lizenzbedingungen, Updates und Upgrades etc.
Kompetente technische Unterstützung ist eine der Schlüsselqualitäten der Software von RP Photonics.
RP Photonics hat Distributoren in verschiedenen Ländern.
Die RP Photonics Software News informieren Sie über aktuelle Entwicklungen und geben den Nutzern interessante Hinweise.
Hier können Sie Anfragen absenden, z. B. betreffend technische Details, Preise und Angebote.
en | de

RP Fiber Power: Simulations- und Design-Software
für Faseroptik, Faserverstärker und Faserlaser

Beispiel: Erbium-dotierter Faserverstärker

Beschreibung des Modells

Wir simulieren einen Faserverstärker mit den folgenden Eigenschaften:

Ergebnisse

Abbildung 1 zeigt die optischen Leistungen entlang der Verstärkerfaser und ebenfalls die relative Anregung der Erbium-Ionen. Letztere ist höher auf der linken Seite, weil dort die Signalleistung geringer ist.

Leistungsverteilung in einem Erbium-dotierten Faserverstärker

Abbildung 1: Verteilung der optischen Leistungen in der Faser.

Abbildung 2 zeigt das optische Spektrum der verstärkten Spontanemission für beide Ausbreitungsrichtungen. ASE in Rückwärtsrichtung ist bei kurzen Wellenlängen deutlich stärker. Dies ist typisch für Quasi-Dreiniveau-Systeme.

ASE-Spektrum eines Erbium-dotierten Faserverstärkers

Abbildung 2: Spektrum der verstärkten Spontanemission in Vorwärts- und Rück­wärts­richtung.

Als Nächstes untersuchen wir die Sättigungseigenschaften: Die Verstärkung wird reduziert (gesättigt) für hohe Signal-Eingangsleistungen. Kurven für Pumpleistungen zwischen 100 mW und 500 mW (je Seite) werden gezeigt.

Sättigungseigenschaften eines EDFAs

Abbildung 3: Die Sättigungseigenschaften.

Nun testen wir die Abhängigkeit der Ausgangsleistung von der Faserlänge. Dies zeigt, dass die Faserlänge hier kein besonders kritischer Parameter für die Effizienz ist.

Variation der Faserlänge eines EDFAs

Abbildung 4: Variation der Faserlänge.

Das letzte Bild zeigt die Verstärkung und die Rauschzahl (noise figure) bei der Signalwellenlänge in Abhängigkeit der gesamten Pumpleistung.

Verstärkung und Rauschzahl

Abbildung 5: Verstärkung und Rauschzahl in Abhängigkeit von der Pumpleistung für eine Signal-Eingangsleistung von 1 mW.

(zurück zu der Liste der Beispiele)

arrow