RP Photonics logo
RP Photonics
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the


<<<  |  >>>

Definition: the free spectral range divided by the FWHM width of the resonances of an optical resonator

German: Finesse

Category: optical resonators

Formula symbol: F

Units: (dimensionless)

How to cite the article; suggest additional literature

The finesse of an optical resonator (cavity) is defined as its free spectral range divided by the (full width at half-maximum) bandwidth of its resonances. It is fully determined by the resonator losses and is independent of the resonator length. If a fraction ρ of the circulating power is left after one round-trip (i.e., a fraction 1 − ρ of the power is lost) when there is no incident field from outside the resonator, the finesse is


where the approximation holds for low round-trip losses (e.g., <10%), i.e., only for high finesse values.

Calculator for the Finesse

Round-trip losses:
Finesse: calc

Enter input values with units, where appropriate. After you have modified some inputs, click the "calc" button to recalculate the output.

finesse versus mirror reflectivity

Figure 1: Finesse of a symmetric resonator as a function of the mirror reflectivity.

The finesse is related to the Q factor: the latter is the finesse times the resonance frequency divided by the free spectral range.

transmission of an optical resonator

Figure 2: Frequency-dependent transmission of a linear Fabry–Pérot interferometer with mirror reflectivities of 80%. The finesse is ≈ 14, and perfect mode matching is assumed.

transmission of an optical resonator

Figure 3: Same as in Figure 2, but with higher mirror reflectivities of 90%. The finesse is ≈ 29.8.

Note that the apparent bandwidth of the resonances, observed e.g. by scanning the resonator length while observing the transmission with a single-frequency input wave, can appear to be increased due to the excitation of transverse modes with different orders. For a perfectly aligned confocal resonator, the frequencies of even higher-order modes are degenerate with frequencies of axial modes, so that this effect does not occur, but with some misalignment the modes are no longer perfectly degenerate. The apparent finesse can then be reduced.

A high finesse can be useful for optical spectrum analysis (→ spectrometers), because it allows the combination of a large free spectral range with a small resonator bandwidth. Therefore, a high spectral resolution in a wide spectral range is possible.

A very high finesse (above 106) can be achieved either by using dielectric supermirrors or in certain microcavities based on whispering gallery modes.

See also: cavities, Fabry–Pérot interferometers, supermirrors, reference cavities, bandwidth, Q factor, free spectral range
and other articles in the category optical resonators

If you like this article, share it with your friends and colleagues, e.g. via social media: