RP Photonics logo
RP Photonics
Encyclopedia
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the
Virtual
Library

Fluence

<<<  |  >>>

Definition: optical energy per unit area

German: Fluenz

Category: general optics

Formula symbol: F

Units: J/m2, J/cm2

How to cite the article; suggest additional literature

In general physics, the fluence is defined as the time-integrated flux of some radiation or particle stream. Specifically in optics, the fluence F e.g. of a laser pulse is the optical energy delivered per unit area. Its most common units are J / cm2 (joules per square centimeter).

In the same way as an optical intensity, the fluence is a position-dependent value. For a laser beam, the fluence is often highest on the beam axis and lower at positions somewhat away from that axis. For continuous-wave beams, the term fluence is meaningful only in combination with some irradiation time.

In some cases, one is interested in the peak fluence, which is the highest fluence value occurring within the laser beam profile. For a Gaussian beam, the peak fluence is the total optical energy divided by πw2 / 2, where w is the Gaussian beam radius.

From the time-dependent optical intensity, one can obtain the fluence by temporal integration over the full pulse duration.

Common Uses of Fluence Values

If an intense short or ultrashort pulse saturates the gain e.g. of a laser crystal or active fiber, the pulse duration is often far below the upper-state lifetime. The local degree of saturation then depends only on the pulse fluence, and not on the temporal distribution of the intensity. An important property of any gain medium is its saturation fluence.

For slow saturable absorbers, essentially the same remarks apply as for gain media.

In the context of laser-induced damage by laser pulses, one often specifies the damage threshold of a material as a fluence. This does not mean, however, that the damage threshold is independent of the pulse duration; usually, the critical fluence value rises for increasing pulse durations.

See also: optical intensity, gain saturation, gain media, saturable absorbers, laser-induced damage
and other articles in the category general optics

If you like this article, share it with your friends and colleagues, e.g. via social media:

arrow