Focal Length
Author: the photonics expert Dr. Rüdiger Paschotta (RP)
Definition: a measure of how strongly an optical system focuses or defocuses light
Units: m
Formula symbol: <$f$>
DOI: 10.61835/ldf Cite the article: BibTex plain textHTML Link to this page LinkedIn
Various types of optical systems (e.g. microscope objectives and curved laser mirrors) can focus or defocus light, and the focal length is used for quantifying such effects. The simplest case is that of a thin focusing lens (Figure 1a). If a sufficiently large collimated beam of light is incident on the lens, the beam will be focused, and the focal length is the distance from the lens to that focus (assuming that the lens is surrounded by vacuum or air, not by some dense substance with a significant refractive index). For a defocusing lens (Figure 1b), the focal length is the distance from the lens to the virtual focus (indicated by the dashed lines), taken as a negative value. Some authors use different sign conventions, however, in particularly concerning the front and back focal length (see below).

Focal Length of a Thin or Thick Lens
A lens with a given focal length <$f$> (taken as positive in the case of a focusing lens) creates a radially varying phase delay for a laser beam according to the following equation:
$$\Delta \varphi (r) = - \frac{\pi }{{\lambda f}}{r^2}$$For a focusing lens, this means a reduced phase delay for increasing <$r$> coordinate. Note that there are different sign conventions in wave optics, where a phase delay can correspond to a positive or negative change in the complex phase.
The formula ignores the constant part of the optical phase change as well as optical aberrations. Note that depending on the function of the lens – for example, focusing collimated input beams or refocusing divergent light –, higher-order terms in the phase profile may be required to avoid optical aberrations.
The following equation allows one to calculate the dioptric power and thus the focal length of lens made of a material with refractive index <$n$> and with curvature radii <$R_1$> and <$R_2$> on the two surfaces:
$$\frac{1}{f} = (n - 1)\left( {\frac{1}{{{R_1}}} + \frac{1}{{{R_2}}}} \right) - \frac{{{{(n - 1)}^2}\;d}}{{n\;{R_1}\;{R_2}}}$$The curvature radii are taken as positive values for convex surfaces and negative for concave surfaces. Positive results are obtained for focusing lenses, negative results for defocusing lenses. The last term is relevant only for thick lenses with substantial curvature on both sides. The formula delivers the focal length within the paraxial approximation, not considering spherical aberrations, for example.
The equation holds for paraxial rays, not too far from the symmetry axis.
Focal Length of a Curved Mirror
Curved mirrors are often used for focusing or defocusing light. For example, within laser resonators curved laser mirrors with dielectric coatings are more commonly used than lenses, mainly because they introduce lower losses.
A mirror with a curvature radius <$R$> of the surface has a focal length <$f = R / 2$>, if the beam axis is normal to the mirror surface. (We take positive signs for concave curvatures and focusing mirrors.) If there is some non-zero angle <$\theta$> between the beam axis and the normal direction, the focal length is <$f_{\tan} = (R / 2) \cdot \cos \theta$> in the tangential direction (i.e., within the plane of incidence) and <$f_{sag} = (R / 2) / \cos \theta$> in the sagittal direction.
Curved laser mirrors usually have a curvature radius somewhere between 10 mm and 5 m. The fabrication of dielectric mirror coatings can be more difficult for very strongly curved mirror substrates, but with refined techniques it is possible to reach focal lengths of only a few millimeters, as required for some miniature lasers.
Focal Length of an Extended Optical System
For an optical system, which may consist of multiple lenses and other optical elements, the above definition of the focal length cannot be used, as it is not clear a priori for an extended system where to measure the distance from the focus: from the entrance into the optical system, from the exit, the middle, or some other position? In principle, an arbitrary definition of a reference point (e.g. the entrance or the middle) could be used, but that would in general mean that some common rules can not be applied, which e.g. hold for the radius of the beam waist at a focus behind some lens with a given focal length (see below), or the possible magnification of a telescope containing that optical system.
A common (but not universally used) approach for the definition of focal lengths of extended systems is based on geometrical optics. For finding the front focal point, one calculates rays which are horizontal on the backside (see Figure 2), using the paraxial approximation. The optical system is considered as a “black box”, where one does not care about the actual ray paths; instead, one works with internal rays which are extrapolated from the outer rays. Based on those extrapolated rays, one can define the front principal plane (or first principal plane). The front focal length is then the distance between the front focal point (in the front focal plane) and the front principal plane (see Figure 2). Some authors define the focal length to be negative in the situation of Figure 2 because the focal point is located before the front principal plane; others take the absolute value.

For a defocusing system, the front focal plane can be located on the output side; it contains a virtual focal point. Again, the focal length is the distance between principal plane and focal plane.
Similarly, one can define the back focal plane (or second focal plane) and back principal plane (or second principal plane), where horizontal rays occur on the left side, while on the right side one has converging rays for a focusing system and diverging rays for a defocusing system. If the refractive index is the same on the input and output side (e.g. ≈1 for air), the front focal length and back focal length are identical (apart from possible sign differences used by some authors) and can thus simply called the focal length. The two principal planes, however, generally do not coincide for thick lenses, and they can even lie outside a lens.
The explained definition delivers a focal length which can also be used in equations for the size of the focus (see below), for example.
Note that the locations of the left and right edges of the optical system (e.g. positions of outer lens surfaces, optical windows etc.) or its housing are not relevant for those definitions.
Different sign conventions for focal lengths are used in the literature. For example, one may have a negative front focal length if the front focal point lies before the front principal plane. Obviously, any equations involving focal lengths should be used with the assumed sign conventions.
See also the article on principal planes.
Focal Distances
In contrast to focal lengths, focal distances are related not to the principal planes but rather to the vertex points of lenses (not caring about a housing, which may be further extended). The front focal distance is thus the distance between front focal point and the entrance surface of the optics, while the back focal distance is the distance between the back surface and the back focal point.
Unfortunately, the terms are also used differently by other authors. For example, it happens that a focal distance is assumed to be the same as a focal length. Therefore, some product catalogs specify focal lengths, which should actually be called focal distances, and in addition the effective focal length.
The focal distance should also not be confused with the working distance, which is the distance between a specimen and the lens housing. Note that a specimen is not necessarily placed in the focal plane, e.g. when the input light to an objective is not collimated.
Effective Focal Length of a Photographic Objective
Considerable confusion arises from the fact that in the context of photo cameras the term effective focal length is also used with an entirely different meaning, as explained in the following.
The angle of view of the camera is determined by the ratio of the image size on the film and the focal length. Film-based cameras have for a long time mostly used 35-mm film (also called 135 film according to ISO Standard 1007), where the image size on the film is typically 36 mm × 24 mm. (The width of the film spool is 35 mm, somewhat larger than 24 mm, as the picture does not extend to the edges of the spool.) A standard objective then has a focal length of 50 mm. However, modern digital cameras (particularly the more compact ones) often contain image sensors which are smaller than 36 mm × 24 mm, so that an objective lens with a correspondingly smaller focal length (e.g. 32 mm instead of 50 mm) is required for obtaining the same field of view. As many photographers are still used to the previously valid relation between focal length and angle of view, it has become common to specify the effective focal length of an objective of a digital camera as that focal length which would give the same angle of view in combination with ordinary 35-mm film. For example, an objective with a true focal length of 32 mm may then be said to have an effective focal length of 50 mm and thus function as a standard objective, rather than e.g. a macro or tele objective.
It can be expected that this type of conversion will be abandoned as 35-mm film becomes less and less common.
Optical Systems with an Adjustable Focal Length
For some applications, in particular for focusing of imaging systems, it is essential than the focal length of an optical system can be fine adjusted. The following physical principles can be used:
- If a lens is made of deformable material, applying some mechanical pressure can alter its shape, and this can change the focal length. This principle is used in the eye's lens. The focal length is somewhat reduced for focusing on nearby objects.
- When an optical system contains multiple optical elements (e.g. lenses), the focal length may be tuned by adjusting the relative distances between the optical elements. This principle is used e.g. in photographic zoom objectives.
Wavelength Dependence of the Focal Length; Using Curved Mirrors
Ordinary lenses, working on the basis of refraction, have a focal length which is slightly wavelength-dependent due to the wavelength dependence of the refractive index (–> chromatic dispersion). This effect leads to chromatic aberrations of imaging systems and similar problems in other applications where an optical system is used for a wide range of optical wavelengths. Lens combinations (e.g., objectives for photographic cameras) can be designed such that chromatic aberrations are minimized. Most common is the use of achromatic doublets, i.e., lenses consisting of two different glass materials chosen such that the overall chromatic aberrations are largely canceled.
One may eliminate chromatic aberrations altogether by using optical systems with mirrors only. A curved mirror with radius of curvature <$R$> has a focal length <$f = R / 2$> (for normal incidence), determined only by the geometry and thus independent of the wavelength. On the other hand, for non-normal incidence the focal length in the tangential direction is decreased by the cosine of the angle of incidence, and increased by the inverse cosine of that angle in the sagittal direction. Therefore, such mirrors can introduce astigmatism.
Dioptric Power
The dioptric power (also called focusing power) of a lens is defined as the inverse of the effective focal length (which is the same is the front and back focal length if the median on both sides of the optics is the same). This means that a strongly focusing lens has a small focal length, but a large dioptric power. For prescription glasses, it is common the specify the dioptric power, whereas the focal length is specified for standard lenses, microscope objectives, and photographic objectives.
Focusing of Divergent Beams

If a divergent (rather than collimated) beam hits a focusing lens, the distance <$b$> from the lens to the focus becomes larger than <$f$> (Figure 2). The lens equation states that
$$\frac{1}{a} + \frac{1}{b} = \frac{1}{f}$$where <$a$> is the distance from the original focus to the lens. This shows that <$b \approx f$> if <$a \gg f$>, but <$b > f$> otherwise. That relation can be intuitively understood: a focusing power <$1 / a$> would be required to collimate the incident beam (i.e. to remove its beam divergence), so that only a focusing power <$1 / f - 1 / a$> is left for focusing.
If <$a \le f$>, the equation cannot be fulfilled: the lens can then not focus the beam.
Note that the lens equation applies for rays, assuming that the paraxial approximation is valid, i.e., all angles relative to the beam axis remain small.
Achievable Beam Waist Radius
If a collimated Gaussian beam with beam radius <$w_0$> hits a focusing lens with focal length <$f$>, the beam radius of the beam waist (focus) after the lens can be calculated with the equation
$${w_{\rm{f}}} = \frac{{\lambda f}}{{\pi {w_0}}}$$where it is assumed that the beam radius at the focus is much smaller than the initial beam radius <$w_0$>. (This condition is violated for beams with a too small incident radius; the focus is then larger than according to the given equation.) Also, it is assumed that the beam radius is significantly larger than the wavelength <$\lambda$>, so that the paraxial approximation is valid.
The equation shows that what determines the minimum possible beam radius is not the focal length <$f$> alone, but rather the ratio of <$f$> to the radius of the open aperture of the lens, which sets a maximum to the input beam radius <$w_0$>. For a focusing or collimation lens, that ratio is essentially the numerical aperture of the lens.
Whether this rule can also be applied to an extended optical system with focal length <$f$> depends on the applied definition of <$f$>. It is useful to specify an effective focal length which is valid for such relations.
More to Learn
Encyclopedia articles:
Suppliers
The RP Photonics Buyer's Guide contains 228 suppliers for lenses. Among them:
Sinoptix

We offer precision optics lenses from 0.5 mm to 500 mm diameter. Surface quality can reach λ/10. All optical materials available.
Avantier

Avantier is proficient in producing customized lenses for all kinds of applications, ranging from prototyping to large-scale production.
OPTOMAN

OPTOMAN's AR-coated lenses are optimized for high laser power applications. These lenses can be used for intracavity, multi-kW CW, and ultrafast pulse applications. Sputtered anti-reflective coatings feature reflectance per surface down to R < 0.01%.
We have bunch of standard lenses ready to be coated on and reduce the lead time as well as end product cost.
Check out our standard lenses on OPTOSHOP.
Shalom EO

Hangzhou Shalom EO specializes in offering a vast selection of stock and custom optical lenses made of glass (SCHOTT N-BK7, Corning UV fused silica), CaF2, sapphire, and other infrared transmitting materials like Ge, ZnSe and Si. Standard AR coatings and coatings with custom spectral properties are available. In addition, Shalom EO also provides abundant choices of lens sizes and focal lengths.
Shalom EO supplies a wide range of lens types, including:
- plano-convex lenses and plano-concave lenses
- biconvex and biconcave lenses
- ball and half-ball lenses
- achromatic doublet lenses
- meniscus lenses
- cylindrical lenses (including fast axis collimators and slow axis collimators)
- aspheric lenses (precision polished or glass molded)
- rod lenses
- axicons
Hundreds of stocks are accessible in our inventories, and different precision requirements such as laser-grade precision can be met with our state-of-the-art production competence.
Besides, Shalom EO also supplies focusing lenses for CO2 lasers, and infrared lenses for thermal imaging cameras.
DPM Photonics

DPM Photonics offers precision lenses for collimating the output of high power fiber devices. We also sell focusing objective lenses.
The Model 02-014-1 is an air spaced, computer designed multi-element lens that is diffraction-limited when used with fibers having core diameters as large as 1200 microns. Operational wavelength is 1064 nm. The 02-014 reimages the emitting surface of the fiber with a 0.67× demagnification. Focused spot sizes are significantly smaller than those achievable with single-element lenses used in a similar collimating/focusing configuration. All optical elements are fabricated from high laser-damage resistant glasses and are anti-reflection coated to reduce reflectance per surface to 0.13%. The working distance between the lens and the target is sufficiently large to allow use of a gas nozzle to enhance the cutting or welding process and to prevent debris from depositing on the lens surface.
Perkins Precision Developments

PPD specializes in custom, high precision optical components suitable for a range of applications from imaging and machine vision to high energy laser systems. Our products cover the ultraviolet (UV) to near-infrared (NIR) spectrum and include:
- Spherical lenses
- Lens assemblies
- Spherical mirror substrates
- Super-polished lenses
These components are available both coated and uncoated, ranging in size from 2 mm to 8 inches in diameter. We offer a variety of materials such as fused silica, infrasil, N-BK7, YAG, SF11, and other high index glasses. For projects with undefined radius of curvature, we provide consultation on existing fabrication tooling and test plates, or can work from custom design specifications.
Additionally, we offer low-loss ion-beam-sputtered anti-reflection (AR) coatings with reflectivity less than 0.1% per surface. These coatings can be applied to PPD lenses or customer-supplied substrates, utilizing IBS thin film deposition technology for repeatable, high-quality results.
For more details on our products and services, please visit our product page.
Knight Optical

Knight Optical has an extensive lens portfolio which are suitable for a variety of applications. Our stock lenses included aspheric, achromatic doublet, ball & half ball, biconvex, cylindrical, condenser, Fresnel, planoconcave/convex, plastic and rod lenses. Knight Optical also offers custom lenses if our stock optics do not meet our customer’s requirements.
Artifex Engineering

Artifex Engineering offers customised optical lenses such as achromatic or cylindrical lenses for almost any application in the UV to IR spectrum. Special requirements such as segmenting and black painted edges can be made on request. Visit our product page for more information. We look forward to your inquiry.
Edmund Optics

Edmund Optics offers the world’s largest inventory of off-the-shelf optical components, which includes an extensive selection of stock optical lenses such as achromatic lenses or aspheric lenses. Many of Edmund Optics’ lenses are offered with a variety of coating options for the ultraviolet (UV), visible, or infrared (IR) spectrum.
Shanghai Optics

Shanghai Optics specializes in custom lenses for all applications, from prototype to volume production.
AMS Technologies

AMS Technologies offers a wide range of optical lenses manufactured from high-quality optical glass, but also crystals and other optical materials:
- spherical lenses in various sizes and shapes (plano-convex,plano-concave, bi-convex, bi-concave, meniscus), uncoated or AR-coated, for UV, visible and IR light
- precision molded-glass aspheric lenses with exceptional price/performance ratio, for visible and IR wavebands, as standard models – also in standard design assemblies – or as infrared aspheric lenses, also as thermal imaging lens assemblies
- cylindrical lenses, plano-convex, plano-concave or rod-style, dimensions from 2 to 250 mm, plus doublets and triplets
- customized optical lenses exactly matching your requirements are available on request
EKSMA OPTICS

EKSMA Optics offers standard plano-convex, plano-concave, biconvex, biconcave, cylindrical lenses and lens kits made of BK7, UVFS or CaF2 optical materials. EKSMA Optics also has an extensive experience in manufacturing of custom optical lenses from a variety of other optical materials. Lenses of custom design can be produced in our CNC lens polishing facility and later coated for your application.
UM Optics

Our spherical lenses are widely used in a variety of industrial and detection cameras, microscopic objectives, spectral imaging, machine vision, infrared night vision and sensing, thermal imaging, environmental protection and biology. Lenses can be equipped with anti-reflective coatings, HR coatings and metallic mirror coatings, dielectric films and spectroscopic films.
UM Optics offers three types of spherical lenses:
- single lens: plano convex/concave, double convex/double concave, meniscus lens
- achromatic doublets: doublet and triple double lenses
- customized lenses: hemispherical, dome lenses, square spherical lenses
Ecoptik

Ecoptik produces a wide range of spherical lenses of different types (including meniscus lenses, half ball lenses, custom hyper-hemisphere lenses and achromatic lenses). We are happy to produce custom lenses of many types.
Laserton

Laserton offers various types of lenses, including plano-convex, plano-concave, double convex, double concave, meniscus, ball, achromatic and cylindrical lenses.
Universe Kogaku

Universe Kogaku offers a wide range of lenses for different application areas:
- CCD lenses and CMOS lens assemblies for board and miniature camera applications
- CCTV lens assemblies for image capture, barcode scanning, night vision systems, medical systems, high-speed imaging, machine vision and robotic vision, automotive lenses and agriculture drone lenses
- security and surveillance lenses
- lenses for metrology
- lenses for diode laser collimators, CD and DVD players, laser pointers, laser levels, laser surface inspection systems and positioning and measuring equipment
- high resolution lenses for machine vision, instrumentation, inspection and vibration-sensitive applications
- imaging lenses and barcode lens assemblies
- medical imaging lens assemblies
- microscope objectives and eyepieces, photographic lenses
- UV lens assemblies
We have a lot of from-stock solutions, but also offer custom developments.
Share this with your network:
Follow our specific LinkedIn pages for more insights and updates: