RP Photonics logo
RP Photonics
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the

Four-wave Mixing

<<<  |  >>>  |  Feedback

Buyer's Guide

Use the RP Photonics Buyer's Guide to find suppliers for photonics products! You will hardly find a more convenient resource.

Ask RP Photonics for simulations of four-wave mixing and other nonlinear effects during pulse propagation in optical fibers.

Acronym: FWM

Definition: an interaction of light waves based on a χ(3) nonlinearity

German: Vierwellenmischung

Category: nonlinear optics

How to cite the article; suggest additional literature

Four-wave mixing is a nonlinear effect arising from a third-order optical nonlinearity, as is described with a χ(3) coefficient. It can occur if at least two different frequency components propagate together in a nonlinear medium such as an optical fiber. Assuming just two input frequency components ν1 and ν2 (with ν2 > ν1), a refractive index modulation at the difference frequency occurs, which creates two additional frequency components (Figure 1). In effect, two new frequency components are generated: ν3 = ν1 − (ν2 − ν1) = 2 ν1 − ν2 and ν4 = ν2 + (ν2 − ν1) = 2 ν2 − ν1. Furthermore, a pre-existing wave a the frequency ν3 or ν4 can be amplified, i.e., it experiences parametric amplification [3].

four-wave mixing

Figure 1: Generation of new frequency components via four-wave mixing.

In the explanation above, it was assumed that four different frequency components interact via four-wave mixing. This is called non-degenerate four-wave mixing. However, there is also the possibility of degenerate four-wave mixing, where two of the four frequencies coincide. For example, there can be a single pump wave providing amplification for a neighbored frequency component (a signal). For each photon added to the signal wave, two photons are taken away from the pump wave, and one is put into an idler wave with a frequency on the other side of the pump.

As four-wave mixing is a phase-sensitive process (i.e., the interaction depends on the relative phases of all beams), its effect can efficiently accumulate over longer distances e.g. in a fiber only if a phase-matching condition is satisfied. This is approximately the case if the frequencies involved are close to each other, or if the chromatic dispersion profile has a suitable shape. In other cases, where there is a strong phase mismatch, four-wave mixing is effectively suppressed. In bulk media, phase matching may also be achieved by using appropriate angles between the beams.

Four-wave mixing in fibers is related to self-phase modulation and cross-phase modulation: all these effects originate from the same (Kerr) nonlinearity and differ only in terms of degeneracy of the waves involved.

Four-wave mixing is relevant in a variety of different situations. Some examples are:


[1]R. L. Carman et al., “Observation of degenerate stimulated four-photon interaction and four-wave parametric amplification”, Phys. Rev. Lett. 17 (26), 1281 (1966)
[2]R. H. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides”, IEEE J. Quantum Electron. 11 (3), 100 (1975)
[3]R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers”, IEEE J. Quantum Electron. 18 (7), 1062 (1982)
[4]D. Nodop et al., “Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber”, Opt. Lett. 34 (22), 3499 (2009)

(Suggest additional literature!)

See also: nonlinearities, Kerr effect, phase matching, dispersion, supercontinuum generation, wavelength division multiplexing
and other articles in the category nonlinear optics

How do you rate this article?

Click here to send us your feedback!

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media:


Desperately Searching for Talented People?

For example, Ph. D. students or post-docs for your research group, or someone for your industrial R & D team?

Use a banner, displayed at this location, to make thousands of users of this extremely popular website aware of your job offers.

Do you know a better way to reach people working in laser technology and related areas?

You can send us your graphical banner (234 px × 600 px), or alternatively just some text.

Contact us to discuss the details!
It will take you little time and not cause excessive cost to get that done.

– Show all banners –

– Get your own banner! –