RP Photonics

Encyclopedia … combined with a great Buyer's Guide!


Frequency Quadrupling

Definition: the phenomenon that an input laser beam generates a beam with four times the optical frequency

German: Frequenzvervierfachung

Category: nonlinear optics

How to cite the article; suggest additional literature

Frequency quadrupling is a process of nonlinear frequency conversion where the resulting optical frequency is four times that of the input laser beam, which means that the wavelength is reduced by a factor of 4. This can be accomplished with two sequential frequency doublers (Figure 1). Another possibility would be to use a single frequency doubler and two sum frequency generation stages for mixing with residual pump light, but that approach is not common.

frequency quadrupling
Figure 1: A typical configuration for frequency quadrupling: an infrared input beam at 1064 nm generates a green 532-nm wave in a first frequency doubler, and a second frequency doubler converts this to light at 266 nm.

A commonly used frequency quadrupling configuration begins with a continuous-wave or pulsed Nd:YAG laser at 1064 nm for generating 532-nm light in a first frequency doubler stage (based e.g. on LBO = lithium triborate) and then 266 nm in a second stage (based e.g. on CLBO = cesium lithium borate). Such ultraviolet light is useful e.g. for pumping a dye laser or an optical parametric oscillator, for Raman spectroscopy in flames, or for material processing, e.g. the writing of fiber Bragg gratings.

Limited Lifetime due to Crystal Degradation

As explained in the article on frequency tripling, nonlinear crystals can be degraded by the intense ultraviolet light during operation. For frequency quadrupling, the correspondingly shorter UV wavelength can even increase such problems and lead to short lifetimes of crystals and other optics. Otherwise, similar aspects apply as discussed in the article on frequency tripling.


The RP Photonics Buyer's Guide contains 13 suppliers for nonlinear crystals and related equipment for frequency quadrupling. Among them:


[1]J. Reintjes and R. C. Eckardt, “Efficient harmonic generation from 532 to 266 nm in ADP and KD*P”, Appl. Phys. Lett. 30, 91 (1977)
[2]D. Bruneau et al., “Fourth harmonic generation of a large-aperture Nd:glass laser”, Appl. Opt. 24 (22), 3740 (1985)
[3]B. A. Hooper et al., “Fourth-harmonic generation in a single lithium niobate-crystal with cascaded second-harmonic generation”, Appl. Opt. 33 (30), 6980 (1994)
[4]M. Oka et al., “All solid-state continuous-wave frequency-quadrupled Nd:YAG laser”, IEEE J. Sel. Top. Quantum Electron. 1 (3), 859 (1995)
[5]J. Knittel and A. H. Kung, “Fourth harmonic generation in a resonant ring cavity”, IEEE J. Quantum Electron. 33 (11), 2021 (1997)
[6]T. Kojima et al., “20-W ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser”, Opt. Lett. 25 (1), 58 (2000)
 [7]T. Südmeyer et al., “Efficient 2nd and 4th harmonic generation of a single-frequency, continuous-wave fiber amplifier”, Opt. Express 16 (3), 1546 (2008)

(Suggest additional literature!)

See also: frequency doubling, frequency tripling, nonlinear frequency conversion, ultraviolet lasers
and other articles in the category nonlinear optics

How do you rate this article?

Click here to send us your feedback!

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you enter any personal data, this implies that you agree with storing it; we will use it only for the purpose of improving our website and possibly giving you a response; see also our declaration of data privacy.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media: