RP Photonics

Encyclopedia … combined with a great Buyer's Guide!


Gain Clamping

Definition: a firm limitation of the gain of some amplifier or laser, usually caused by lasing action

German: Verstärkungs-Begrenzung

Categories: optical amplifiers, lasers

How to cite the article; suggest additional literature

When the (optical or electrical) pump power of a laser gain medium is increased, this will usually lead to an increase in the resulting optical gain. However, there are situations where the gain is firmly clamped to some precisely defined value which cannot be exceeded even with strongly increased pump powers. In particular, this is the case when laser action occurs. The gain is then clamped exactly to the value of the optical resonator losses; any increase of gain would lead to an exponentially rising laser power, which is obviously not consistent with steady-state conditions. Note that this mechanism leads to a much more precisely defined gain than e.g. saturation of the gain for high pump powers.

In lasers and amplifiers (e.g. fiber amplifiers), gain clamping limits not only the optical gain but also the (spatially integrated) excitation density (upper-state population). In turn, this also limits the stored energy and the strength of other effects such as quenching processes or excited-state absorption.

Gain clamping is sometimes exploited in fiber amplifiers for stabilization of the optical gain [1, 2]. Here, lasing is deliberately allowed at some wavelength outside the range of signal wavelengths; this can be achieved by incorporating fiber Bragg gratings into the device. Fluctuations of the pump or signal power will then have only a small effect. Note, however, that gain clamping stabilizes only the steady-state gain; transient phenomena can still occur, for example for fast changes of pump or signal input power.

Of course, gain clamping can also occur in a high-gain amplifier as a result of unwanted parasitic lasing. Stimulated Brillouin scattering can also lead to gain clamping.


[1]M. Zirngibl, “Gain control in erbium-doped fibre amplifiers by an all optical feed back loop”, Electron. Lett. 27 (7), 560 (1991)
[2]H. Okamura, “Automatic optical loss compensation with Erbium-doped fiber amplifier”, IEEE J. Lightwave Technol. 10 (8), 1110 (1992)
[3]Y. Takushima and K. Kikuchi, “Gain spectrum equalization of all-optical gain-clamped erbium-doped fiber amplifier”, IEEE Photon. Technol. Lett. 11 (2), 176 (1999)

(Suggest additional literature!)

See also: amplifiers, fiber amplifiers, lasers, gain, gain media
and other articles in the categories optical amplifiers, lasers

How do you rate this article?

Click here to send us your feedback!

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you enter any personal data, this implies that you agree with storing it; we will use it only for the purpose of improving our website and possibly giving you a response; see also our declaration of data privacy.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media: