RP Photonics logo
RP Photonics
Encyclopedia
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the
Virtual
Library

Gaussian Pulses

<<<  |  >>>  |  Feedback

Buyer's Guide

Use the RP Photonics Buyer's Guide to find suppliers for photonics products! You will hardly find a more convenient resource.

Ask RP Photonics concerning any details of ultrashort pulse generation or characterization.

Definition: pulses with a temporal intensity profile which has a Gaussian shape

German: gaußförmige Pulse

Category: light pulses

How to cite the article; suggest additional literature

Ultrashort pulses from mode-locked lasers, for example, often have a temporal shape (i.e., shape of the curve showing optical power versus time) which can be approximately described with a Gaussian function:

intensity profile of a Gaussian pulse

where τ is the full width at half-maximum (FWHM) pulse duration.

In many cases, Gaussian pulses have no chirp, i.e., are transform-limited. In that case, the spectral width (optical bandwidth) is

spectral width of Gaussian pulse

which means that the time–bandwidth product is ≈ 0.44.

Calculator for Gaussian Pulses

Center wavelength:
Duration: calc (from bandwidth)
Bandwidth: calc (from duration)
(from duration)

Enter input values with units, where appropriate. After you have modified some values, click a "calc" button to recalculate the field left of it.

Compared with a sech2-shaped pulse, a Gaussian pulse with the same width at half-maximum has somewhat weaker wings:

comparison of Gaussian and sech-shaped pulses

Figure 1: Temporal shapes of Gaussian and sech2 pulses.

The peak power of a Gaussian pulse is ≈ 0.94 times the pulse energy divided by the FWHM pulse duration.

The Gaussian pulse shape is typical for pulses from actively mode-locked lasers; it results e.g. from the Haus master equation in simple cases. However, it is also found in various other situations.

See also: pulses, sech2-shaped pulses, transform limit

How do you rate this article?

Click here to send us your feedback!

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent
Comments:

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media:

arrow

Send us nice photographs!

If you have nice photographs of laser devices, measurement equipment, optical components, etc., which are suitable for illustrating aspects in our encyclopedia articles, you are welcome to send them to us!

Researchers may also have photographs or drawings of experimental setups, microscope images and the like.

Such materials should of course help to illustrate aspects of general interest, rather than only very specialized matters. We also do not accept pictures which are primarily advertising.

Of course, we always acknowledge the source of an image in the figure caption, so that you get your proper credit.

– Show all banners –

– Get your own banner! –