Encyclopedia … combined with a great Buyer's Guide!

Sponsors:     and others

Giles Parameters

Definition: spectroscopic data concerning absorption and amplification in an active fiber

German: Giles-Parameter

Categories: fiber optics and waveguides, optical amplifiers, methods

How to cite the article; suggest additional literature


URL: https://www.rp-photonics.com/giles_parameters.html

For modeling the performance of fiber amplifiers made from rare-earth-doped fibers, so-called Giles parameters are often used. These comprise two wavelength-dependent quantities: the absorption coefficient α(λ) of the fiber with all laser-active ions in the ground state, and the gain coefficient g*(λ) for the fiber with all laser-active ions in the upper laser level. (The star may be interpreted as indicating the fully excited fiber.)

The Giles parameters are directly related to the transition cross-sections of the laser transition and the overlap coefficients Γ(λ) of the fiber modes with the doped core:

Giles parameter alpha
Giles parameter g star

These equations are based on the assumption that the doping concentration is constant within the fiber core and zero outside it. However, the overlap factor can be generalized for smooth doping profiles.

Of course, the equations are based on the assumption that only the laser transition contributes to gain or loss in the considered wavelength range. Parasitic background losses due to absorption and scattering in the fiber may be treated separately. Possible additional effects from excited-state absorption should be kept in mind.

Giles parameters
Figure 1: Giles parameters of an erbium-doped fiber.

In practice, it is often difficult to precisely determine the dopant concentration ndop, the overlap coefficients Γ(λ) and the transition cross-sections of a fiber. However, the Giles parameters can be obtained directly from measurements of absorption and gain. Simple amplifier models may then directly be based on the Giles parameters rather than on the not precisely known values of ndop, Γ(λ), σabs(λ) and σem(λ).

A difficulty for the measurement of gain (g*) is that one will usually not achieve full excitation of the laser-active ions. Even if one knew the actually achieved fraction of excited ions, one could generally not simply scale up the gain for full excitation, since for the frequently used quasi-three-level transitions the spectral shape of the net gain is influenced by reabsorption effects and thus varies with the degree of excitation.

Questions and Comments from Users

Here you can submit questions and comments. As far as they get accepted by the author, they will appear above this paragraph together with the author’s answer. The author will decide on acceptance based on certain criteria. Essentially, the issue must be of sufficiently broad interest.

Please do not enter personal data here; we would otherwise delete it soon. (See also our privacy declaration.) If you wish to receive personal feedback or consultancy from the author, please contact him, e.g. via e-mail.

Your question or comment:

Spam check:

  (Please enter the sum of thirteen and three in the form of digits!)

By submitting the information, you give your consent to the potential publication of your inputs on our website according to our rules. (If you later retract your consent, we will delete those inputs.) As your inputs are first reviewed by the author, they may be published with some delay.


[1]C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers”, IEEE J. Lightwave Technol. 9 (2), 271 (1991), doi:10.1109/50.65886
[2]H. Feng et al., “Characterization of Giles parameters for extended L-band erbium-doped fibers”, J. Opt. Soc. Am. B 39 (7), 1783 (2022), doi:10.1364/JOSAB.459508

(Suggest additional literature!)

See also: rare-earth-doped fibers, fiber amplifiers
and other articles in the categories fiber optics and waveguides, optical amplifiers, methods


Share this with your friends and colleagues, e.g. via social media:

These sharing buttons are implemented in a privacy-friendly way!