RP Photonics logo
RP Photonics
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the

Giles Parameters

<<<  |  >>>

Definition: spectroscopic data concerning absorption and amplification in an active fiber

German: Giles-Parameter

Categories: optical amplifiers, fiber optics and waveguides, methods

How to cite the article; suggest additional literature

For modeling the performance of fiber amplifiers made from rare-earth-doped fibers, so-called Giles parameters are often used. These comprise two wavelength-dependent quantities: the absorption coefficient α(λ) of the fiber with all laser-active ions in the ground state, and the gain coefficient g*(λ) for the fiber with all laser-active ions in the upper laser level. (The star may be interpreted as indicating the fully excited fiber.)

The Giles parameters are directly related to the transition cross sections of the laser transition and the overlap coefficients Γ(λ) of the fiber modes:

Giles parameter alpha
Giles parameter g star

These equations are based on the assumption that the doping concentration is constant within some volume and zero outside it. However, they can be easily generalized for smooth doping profiles.

Of course, the equations are based on the assumption that only the laser transition contributes to gain or loss in the considered wavelength range. Parasitic background losses (absorption and scattering) of the fiber can be treated separately. Possible additional effects from excited-state absorption should be kept in mind.

Giles parameters

Figure 1: Giles parameters of an erbium-doped fiber.

In practice, it is often difficult to precisely determine the dopant concentration ndop, the overlap coefficients Γ(λ) and the transition cross sections of a fiber. However, the Giles parameters can be obtained directly from measurements of absorption and gain. (A difficulty for the gain, however, is that one may not achieve full excitation of the laser-active ions.) Amplifier models may then directly be based on the Giles parameters rather than on the not precisely known values of ndop, Γ(λ), σabs(λ) and σem(λ).


[1]C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers”, J. Lightwave Technol. 9 (2), 271 (1991)

(Suggest additional literature!)

See also: rare-earth-doped fibers, fiber amplifiers
and other articles in the categories optical amplifiers, fiber optics and waveguides, methods

If you like this article, share it with your friends and colleagues, e.g. via social media: