RP Photonics

Encyclopedia … combined with a great Buyer's Guide!

VLib
Virtual
Library

Integrated Optics

Definition: the technology dealing with the construction of photonic integrated circuits

German: integrierte Optik

Category: photonic devices

How to cite the article; suggest additional literature

Integrated optics is a technology which aims at constructing so-called integrated optical devices or photonic integrated circuits or planar lightwave circuits, containing several or many optical components which are combined to fulfill some more or less complex functions. Such components can e.g. be optical filters, modulators, amplifiers, lasers and photodetectors. They can, e.g., be fabricated on the surface of some crystalline material (such as silicon, silica, or LiNbO3) and connected with waveguides.

The original inspiration of integrated optics came from the technology of electronic integrated circuits, which has shown rapid development over several decades and has led to amazing achievements, such as complex and powerful microprocessors containing many millions of transistors, specialized signal processors and computer memory chips with huge data storage capacity. Unfortunately, integrated optics has not been able to match the progress of microelectronics in terms of the complexity of possible devices. This results from a number of technical limitations:

For these reasons, integrated optical circuits have not reached by far the complexity of electronic integrated circuits. However, devices of moderate complexity can still be useful for example for optical fiber communications, where they can host multiple data transmitters and/or receivers, consisting of distributed feedback lasers, optical modulators, photodiodes, and optical filters (e.g. in the form of arrayed waveguide gratings). Recently, new hope for a powerful and cost-effective integrated optical technology has arisen from developments in silicon photonics.

Bibliography

[1]P. K. Tien, “Light waves in thin films and integrated optics”, Appl. Opt. 10 (11), 2395 (1971)
[2]G. I. Stegeman and C. T. Seaton, “Nonlinear integrated optics”, J. Appl. Phys. 58 (12), R57 (1985)
[3]G. I. Stegeman et al., “Third order nonlinear integrated optics”, J. Lightwave Technol. 6 (6), 953 (1988)
[4]L. Thylen, “Integrated optics in LiNbO3: recent developments in devices for telecommunications”, J. Lightwave Technol. 6 (6), 847 (1988)
[5]I. Baumann et al., “Er-doped integrated optical devices in LiNbO3”, IEEE J. Sel. Top. Quantum Electron. 2 (2), 355 (1996)
[6]B. Jalali et al., “Advances in silicon-on-insulator optoelectronics”, IEEE J. Sel. Top. Quantum Electron. 4 (6), 938 (1998)
[7]K Okamoto, “Recent progress of integrated optics planar lightwave circuits”, Opt. Quantum Electron. 31 (2), 107 (1999)

(Suggest additional literature!)

See also: photonic integrated circuits, silicon photonics, optoelectronics, nanofibers, optical fiber communications
and other articles in the category photonic devices

If you like this article, share it with your friends and colleagues, e.g. via social media:

arrow