RP Photonics logo
RP Photonics
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the

Integrating Spheres

<<<  |  >>>

Definition: devices with a diffusely reflecting inner surface, used for certain optical measurements

German: integrierende Kugel, Kugelphotometer

Categories: optical metrology, photonic devices

How to cite the article; suggest additional literature

An integrating sphere (also called Ulbricht sphere after Friedrich Ulbricht) is an optical device for various purposes such as

integrating sphere

Figure 1: Integrating sphere for measuring optical powers independent of the spatial beam properties.

The device (see Fig. 1) is a hollow sphere with a diffusely reflecting internal surface, typically two or more small openings (ports) for introducing light or attaching a photodetector, and often some so-called baffles, which are light barriers used to prevent direct illumination of a detector by a light source. The arrangement causes many diffuse reflections of the introduced light before it reaches a detector, so that the light flux becomes very uniform at the detector, and nearly independent of the spatial and polarization properties of the introduced light: the detected optical power depends only on the total introduced power. In that way, the total output power of a laser diode can be measured, even if the beam divergence is fairly large.

Apart from such measurement purposes, an integrating sphere can be used to illuminate a device very uniformly. This can be important e.g. for testing the homogeneity of digital imaging equipment (e.g. CCD arrays).

Ideally, the coating on the inner side of the integrating sphere has a very high reflectivity over the required wavelength range, and the reflection is very diffuse. If the optical losses in the sphere and through the small ports are low, the multiple reflections can lead to a fairly high optical intensity inside the sphere and consequently to a high optical efficiency, even if the sphere is much larger than the light source and the detector.

See also: photodetectors
and other articles in the categories optical metrology, photonic devices

In the RP Photonics Buyer's Guide, 13 suppliers for integrating spheres are listed.

If you like this article, share it with your friends and colleagues, e.g. via social media: