RP Photonics logo
RP Photonics
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the


<<<  |  >>>  |  Feedback

Buyer's Guide

The ideal place to find suppliers for photonics products: high-quality information, simple and fast, respects your privacy!

41 suppliers for interferometers are listed.

Your are not yet listed? Get your entry!

Ask RP Photonics for advice on various types of interferometers, designs, etc.

Definition: optical devices utilizing the phenomenon of interference

German: Interferometer

Categories: optical metrology, photonic devices

How to cite the article; suggest additional literature

An interferometer is an optical device which utilizes the effect of interference. Typically, it starts with some input beam, splits it into two separate beams with some kind of beam splitter (a partially transmissive mirror), possibly exposes some of these beams to some external influences (e.g. some length changes or refractive index changes in a transparent medium), and recombines the beams on another beam splitter. The power or the spatial shape of the resulting beam can then be used e.g. for a measurement.

Types of Interferometers

Mach–Zehnder Interferometer

Mach–Zehnder interferometer

Figure 1: Mach–Zehnder interferometer.

The Mach–Zehnder interferometer was developed by the physicists Ludwig Mach and Ludwig Zehnder. As shown in Figure 1, it uses two separate beam splitters (BS) to split and recombine the beams, and has two outputs, which can e.g. be sent to photodetectors. The optical path lengths in the two arms may be nearly identical (as in the figure), or may be different (e.g. with an extra delay line). The distribution of optical powers at the two outputs depends on the precise difference in optical arm lengths and on the wavelength (optical frequency).

If the interferometer is well aligned, the path length difference can be adjusted (e.g. by slightly moving one of the mirrors) so that for a particular optical frequency the total power goes into one of the outputs. For misaligned beams (e.g. with one mirror being slightly tilted), there will be some fringe patterns in both outputs, and variations of the path length difference affect mainly the shapes of these interference patterns, whereas the distribution of total powers on the outputs may not change very much.

Michelson Interferometer

Michelson interferometer

Figure 2: Michelson interferometers.

A Michelson interferometer, as invented by Albert Abraham Michelson, uses a single beam splitter for separating and recombining the beams. If the two mirrors are aligned for exact perpendicular incidence (see the upper figure), only one output is accessible, and the light of the other output goes back to the light source. If that optical feedback is unwanted (as is often the case with a laser, which might be destabilized), and/or access to the second output is required, the recombination of beams can occur at a somewhat different location on the beam splitter. One possibility is to use retroreflectors, as shown in the lower figure; this also has the advantage that the interferometer is fairly insensitive to slight misalignment of the retroreflectors. Alternatively, simple mirrors at slightly non-normal incidence can be used.

If the path length difference is non-zero, as shown in both parts of the figure, constructive or destructive interference e.g. for the downward-directed output can be achieved only within a finite optical bandwidth. Michelson originally used a broadband light source in the famous Michelson–Morley experiment, so that he had to build an interferometer with close to zero arm length difference.

There are many variations of the Michelson interferometer. For example, a Twyman–Green interferometer is essentially a Michelson interferometer illuminated with a monochromatic point source. It is used for characterizing optical elements.

Fabry–Pérot Interferometer

Fabry–Pérot interferometer

Figure 3: Fabry–Pérot interferometer.

A Fabry–Pérot interferometer (Figure 3) consists of two parallel mirrors, allowing for multiple round trips of light. (A monolithic version of this can be a glass plate with reflective coatings on both sides.) For high mirror reflectivities, such a device can have very sharp resonances (a high finesse), i.e. exhibit a high transmission only for optical frequencies which closely match certain values. Based on these sharp features, distances (or changes of distances) can be measured with a resolution far better than the wavelength. Similarly, resonance frequencies can be defined very precisely.

A modified version is the Fizeau interferometer, where the second mirror is totally reflective, and slightly tilted. The reflected light is used (e.g. with an angled beam splitter) e.g. for characterizing optical components.

Another special kind of Fabry–Pérot interferometer, used for dispersion compensation, is the Gires–Tournois interferometer.

Sagnac Interferometer

Sagnac interferometer

Figure 4: Sagnac interferometer.

A Sagnac interferometer (named after the French physicist Georges Sagnac) uses counterpropagating beams in a ring path, realized e.g. with multiple mirrors (as in Figure 4) or with an optical fiber. If the whole interferometer is rotated e.g. around an axis which is perpendicular to the drawing plane, this introduces a relative phase shift of the counterpropagating beams (Sagnac effect). The sensitivity for rotations depends on the area covered by the ring, multiplied by the number of round trips (which can be large e.g. when using many turns in an optical fiber). It is possible e.g. to obtain a sensitivity which is sufficient for measuring the rotation of the Earth around its axis.

Sagnac interferometers are used e.g. in inertial guidance systems.

Common-path Interferometers

Some interferometers use a common beam path but different polarizations for the two beams. This has the advantage that fluctuations of the geometric path length do not affect the interferometer output, whereas the interferometer can be a sensitive detector for birefringence.

Fiber Interferometers

All the interferometer types discussed above can also be implemented with optical fibers. Instead of beam splitters, one then uses fiber couplers.

A potential difficulty is that the polarization state of light may change during propagation in the fiber. This often requires one to include a fiber polarization controller (which may occasionally have to be readjusted) or to use polarization-maintaining fibers.

Also note that temperature changes in the fibers (as well as bending) can affect the optical phase shifts. This can be a problem if different fibers belong to different interferometer arms. However, there are also fiber interferometers where one fiber serves for both arms, e.g. using two different polarization directions in the same fiber.

Physical Principles of Interferometers

There are also substantially different principles of using interferometers. For example, Michelson interferometers are used in very different ways, using different types of light sources and photodetectors:

Another class of interferometric methods is named spectral interferometry. Here, interference in the spectral domain is exploited. The spectral modulation period is essentially determined by a time delay.


Interferometers can be used for many different purposes – by far not only for length measurements. Some examples are:

Depending on the application, the demands on the light source in an interferometer can be very different. In many cases, a spectrally very pure source, e.g. a single-frequency laser is required. Sometimes, the laser has to be wavelength-tunable. In other cases (e.g. for dispersion measurements with white light interferometers), a light source with a very broad and smooth optical spectrum is required.

Noise Influences

Interferometric measurements can be subject to laser noise, but often also from quantum noise influences. Typically, vacuum noise entering the open input port at a beamsplitter defines the standard quantum limit (shot noise limit) for the sensitivity [2, 5]. A noise level below that limit can be achieved by injecting squeezed states of light into an interferometer [2, 4, 10].


[1]A. Labeyrie, “Stellar interferometry methods”, Am. Rev. Astrom. Astrophys. 16, 77 (1978)
[2]C. M. Caves, “Quantum-mechanical noise in an interferometer”, Phys. Rev. D 23 (8), 1693 (1981)
[3]K. Creath, “Phase-shifting speckle interferometry”, Appl. Opt. 24 (18), 3053 (1985)
[4]M. Xiao et al., “Precision measurement beyond the shot-noise limit”, Phys. Rev. Lett. 59 (3), 278 (1987)
[5]M. T. Jaekel and S. Reynaud, “Quantum limits in interferometric measurements”, Europhys. Lett. 13, 301 (1990)
[6]S. Diddams and J.-C. Diels, “Dispersion measurements with white-light interferometry”, J. Opt. Soc. Am. B 13 (6), 1120 (1996)
[7]R. Dandliker et al., “Distance measurement by multiple-wavelength interferometry”, J. Opt. 29 (3), 105 (1998)
[8]J. M. Schmitt, “Optical coherence tomography (OCT): a review”, IEEE J. Sel. Top. Quantum Electron. 5 (4), 1205 (1999)
[9]J. D. Monnier, “Optical interferometry in astronomy”, Rep. Prog. Phys. 66 (5), 789 (2003)
[10]A. Thüring et al., “Broadband squeezing of quantum noise in a Michelson interferometer with Twin-Signal-Recycling”, Opt. Lett. 34 (6), 824 (2009)
[11]J. Biophoton. 2 (6-7) (2009): special issue on optical coherence tomography

(Suggest additional literature!)

See also: interference, spectral interferometry, Gires–Tournois interferometers, Fabry–Pérot interferometers, white light interferometers, reference cavities, optical metrology, distance measurements with lasers, optical heterodyne detection

In the RP Photonics Buyer's Guide, 41 suppliers for interferometers are listed.

Dr. R. Paschotta

This encyclopedia is authored by Dr. Rüdiger Paschotta, the founder and executive of RP Photonics Consulting GmbH. Contact this distinguished expert in laser technology, nonlinear optics and fiber optics, and find out how his technical consulting services (e.g. product designs, problem solving, independent evaluations, or staff training) and software could become very valuable for your business!

How do you rate this article?

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media:


RP Fiber Power – the versatile Fiber Optics Software

An Amazing Tool

RP Fiber Power software

This amazing tool is extremely helpful for the development of passive and active fiber devices.


Watch our quick video tour!

Single-mode and Multi­mode Fibers


Calculate mode properties such as

  • amplitude distributions (near field and far field)
  • effective mode area
  • effective index
  • group delay and chromatic dispersion

Also calculate fiber coupling efficiencies; simulate effects of bending, nonlinear self-focusing or gain guiding on beam propagation, higher-order soliton propagation, etc.

Arbitrary Index Profiles

A fiber's index profile may be more complicated than just a circle:

special fibers

Here, we "printed" some letters, translated this into an index profile and initial optical field, propagated the light over some distance and plotted the output field – all automated with a little script code.

Fiber Couplers, Double-clad Fibers, Multicore Fibers, …

fiber devices

Simulate pump absorption in double-clad fibers, study beam propagation in fiber couplers, light propagation in tapered fibers, analyze the impact of bending, cross-saturation effects in amplifiers, leaky modes, etc.

Fiber Amplifiers

fiber amplifier

For example, calculate

  • gain and saturation characteristics (for continuous or pulsed operation)
  • energy transfers in erbium-ytterbium-doped amplifier fibers
  • influence of quenching effects, amplified spontaneous emission etc.

in single amplifier stages or in multi-stage amplifier systems, with double-clad fibers, etc.

Fiber-optic Telecom Systems

eye diagram

For example,

  • analyze dispersive and nonlinear signal distortions
  • investigate the impact of amplifier noise
  • optimize nonlinear management and the placement of amplifiers

Find out in detail what is going on in such a system!

Fiber Lasers

fiber laser

For example, analyze and optimize the

  • power conversion efficiency
  • wavelength tuning range
  • Q switching dynamics
  • femtosecond pulse generation with mode locking

for lasers based on double-clad fiber, with linear or ring resonator, etc.

Ultrafast Fiber Lasers and Amplifiers

fiber laser

For example, study

  • pulse formation mechanisms
  • impact of nonlinearities and chromatic dispersion
  • parabolic pulse amplification
  • feedback sensitivity
  • supercontinuum generation

Apply any sequence of elements to your pulses!

… and even Bulk Devices

regenerative amplifier

For example, study

  • Q switching dynamics
  • mode-locking behavior
  • impact of nonlinearities and chromatic dispersion
  • influence of a saturable absorber
  • chirped-pulse amplification
  • regenerative amplification

RP Fiber Power is an extremely versatile tool!

Mode Solver

fiber modes

For example, calculate

  • amplitude and intensity profiles
  • effective mode areas
  • cut-off wavelengths
  • propagation constants
  • group velocities
  • chromatic dispersion

All this is calculated with high efficiency!

Beam Propagation

beam propagation

Propagate optical field with arbitrary wavefronts through fibers. These may be asymmetric, bent, tapered, exhibit random disturbances, etc.

See our demo video for numerical beam propagation.

Laser-active Ions

level scheme

Work with the standard gain model, or define your own level scheme!

Can include different ions, energy transfers, upconversion and quenching effects, complicated pumping schemes, etc.

Multiple Pump and Signal Waves, ASE

optical channels

Define multiple pump and signal waves and many ASE channels – each one with its own transverse intensity profile, loss coefficient etc.

The power calculations are highly efficient and reliable.

Simple Use and High Flexibility Combined

For simpler tasks, use convenient forms:

signal parameters

Script code is automatically generated and can then be modified by the user. A powerful script language gives you an unparalleled flexibility!

High-quality Documentation and Competent Support

The carefully prepared comprehensive documentation includes a PDF manual and an interactive online help system.

Competent technical support is provided: the developer himself will help you and make sure that any problem is solved!

Our support is like included technical consulting.

Boost your competence, efficiency and creativity!

  • Stop fishing in the dark! Develop a clear quantitative understanding of your devices.
  • Explore the effects of possible design changes on your desk.
  • That way, get most efficient in the lab.
  • Find optimized solutions efficiently, minimizing time to market.
  • Get new ideas by playing with your models.

Efficiency and success of
R & D are not a matter of chance.

See our detailed description with many case studies!

Contact us to get a quotation!

– Show all banners –

– Get your own banner! –