RP Photonics

Encyclopedia … combined with a great Buyer's Guide!



<<<  |  >>>

Definition: optical devices utilizing the phenomenon of interference

German: Interferometer

Categories: optical metrology, photonic devices

How to cite the article; suggest additional literature

An interferometer is an optical device which utilizes the effect of interference. Typically, it starts with some input beam, splits it into two separate beams with some kind of beam splitter (a partially transmissive mirror), possibly exposes some of these beams to some external influences (e.g. some length changes or refractive index changes in a transparent medium), and recombines the beams on another beam splitter. The power or the spatial shape of the resulting beam can then be used e.g. for a measurement.

Types of Interferometers

Mach–Zehnder Interferometer

Mach–Zehnder interferometer

Figure 1: Mach–Zehnder interferometer.

The Mach–Zehnder interferometer was developed by the physicists Ludwig Mach and Ludwig Zehnder. As shown in Figure 1, it uses two separate beam splitters (BS) to split and recombine the beams, and has two outputs, which can e.g. be sent to photodetectors. The optical path lengths in the two arms may be nearly identical (as in the figure), or may be different (e.g. with an extra delay line). The distribution of optical powers at the two outputs depends on the precise difference in optical arm lengths and on the wavelength (or optical frequency).

If the interferometer is well aligned, the path length difference can be adjusted (e.g. by slightly moving one of the mirrors) so that for a particular optical frequency the total power goes into one of the outputs. For misaligned beams (e.g. with one mirror being slightly tilted), there will be some fringe patterns in both outputs, and variations of the path length difference affect mainly the shapes of these interference patterns, whereas the distribution of total powers on the outputs may not change very much.

Michelson Interferometer

Michelson interferometer

Figure 2: Michelson interferometers.

A Michelson interferometer, as invented by Albert Abraham Michelson, uses a single beam splitter for separating and recombining the beams. If the two mirrors are aligned for exact perpendicular incidence (see the upper figure), only one output is accessible, and the light of the other output goes back to the light source. If that optical feedback is unwanted (as is often the case with a laser, which might be destabilized), and/or access to the second output is required, the recombination of beams can occur at a somewhat different location on the beam splitter. One possibility is to use retroreflectors, as shown in the lower figure; this also has the advantage that the interferometer is fairly insensitive to slight misalignment of the retroreflectors. Alternatively, simple mirrors at slightly non-normal incidence can be used.

If the path length difference is non-zero, as shown in both parts of the figure, constructive or destructive interference e.g. for the downward-directed output can be achieved only within a finite optical bandwidth. Michelson originally used a broadband light source in the famous Michelson–Morley experiment, so that he had to build an interferometer with close to zero arm length difference.

There are many variations of the Michelson interferometer. For example, a Twyman–Green interferometer is essentially a Michelson interferometer illuminated with a monochromatic point source. It is used for characterizing optical elements.

Fabry–Pérot Interferometer

Fabry–Pérot interferometer

Figure 3: Fabry–Pérot interferometer.

A Fabry–Pérot interferometer (Figure 3) consists of two parallel mirrors, allowing for multiple round trips of light. (A monolithic version of this can be a glass plate with reflective coatings on both sides.) For high mirror reflectivities, such a device can have very sharp resonances (a high finesse), i.e. exhibit a high transmission only for optical frequencies which closely match certain values. Based on these sharp features, distances (or changes of distances) can be measured with a resolution far better than the wavelength. Similarly, resonance frequencies can be defined very precisely.

A modified version is the Fizeau interferometer, where the second mirror is totally reflective, and slightly tilted. The reflected light is used (e.g. with an angled beam splitter) e.g. for characterizing optical components.

Another special kind of Fabry–Pérot interferometer, used for dispersion compensation, is the Gires–Tournois interferometer.

Sagnac Interferometer

Sagnac interferometer

Figure 4: Sagnac interferometer.

A Sagnac interferometer (named after the French physicist Georges Sagnac) uses counterpropagating beams in a ring path, realized e.g. with multiple mirrors (as in Figure 4) or with an optical fiber. If the whole interferometer is rotated e.g. around an axis which is perpendicular to the drawing plane, this introduces a relative phase shift of the counterpropagating beams (Sagnac effect). The sensitivity for rotations depends on the area covered by the ring, multiplied by the number of round trips (which can be large e.g. when using many turns in an optical fiber). It is possible e.g. to obtain a sensitivity which is sufficient for measuring the rotation of the Earth around its axis.

Sagnac interferometers are used e.g. in inertial guidance systems.

Common-path Interferometers

Some interferometers use a common beam path but different polarizations for the two beams. This has the advantage that fluctuations of the geometric path length do not affect the interferometer output, whereas the interferometer can be a sensitive detector for birefringence.

Fiber Interferometers

All the interferometer types discussed above can also be implemented with optical fibers. Instead of beam splitters, one then uses fiber couplers.

A potential difficulty is that the polarization state of light may change during propagation in the fiber. This often requires one to include a fiber polarization controller (which may occasionally have to be readjusted) or to use polarization-maintaining fibers.

Also note that temperature changes in the fibers (as well as bending) can affect the optical phase shifts. This can be a problem if different fibers belong to different interferometer arms. However, there are also fiber interferometers where one fiber serves for both arms, e.g. using two different polarization directions in the same fiber.

Physical Principles of Interferometers

There are also substantially different principles of using interferometers. For example, Michelson interferometers are used in very different ways, using different types of light sources and photodetectors:

Another class of interferometric methods is named spectral interferometry. Here, interference in the spectral domain is exploited. The spectral modulation period is essentially determined by a time delay.


Interferometers can be used for many different purposes – by far not only for length measurements. Some examples are:

Depending on the application, the demands on the light source in an interferometer can be very different. In many cases, a spectrally very pure source, e.g. a single-frequency laser is required. Sometimes, the laser has to be wavelength-tunable. In other cases (e.g. for dispersion measurements with white light interferometers), a light source with a very broad and smooth optical spectrum is required.

Noise Influences

Interferometric measurements can be subject to laser noise, but often also from quantum noise influences. Typically, vacuum noise entering the open input port at a beamsplitter defines the standard quantum limit (shot noise limit) for the sensitivity [2, 5]. A noise level below that limit can be achieved by injecting squeezed states of light into an interferometer [2, 4, 12].


[1]A. Labeyrie, “Stellar interferometry methods”, Am. Rev. Astrom. Astrophys. 16, 77 (1978)
[2]C. M. Caves, “Quantum-mechanical noise in an interferometer”, Phys. Rev. D 23 (8), 1693 (1981)
[3]K. Creath, “Phase-shifting speckle interferometry”, Appl. Opt. 24 (18), 3053 (1985)
[4]M. Xiao et al., “Precision measurement beyond the shot-noise limit”, Phys. Rev. Lett. 59 (3), 278 (1987)
[5]M. T. Jaekel and S. Reynaud, “Quantum limits in interferometric measurements”, Europhys. Lett. 13, 301 (1990)
[6]D. Shoemaker et al., “Prototype Michelson interferometer with Fabry-Perot cavities”, Appl. Opt. 30 (22), 3133 (1991)
[7]P. Fritschel et al., “Demonstration of light recycling in a Michelson interferometer with Fabry-Perot cavities”, Appl. Opt. 31 (10), 1412 (1992)
[8]S. Diddams and J.-C. Diels, “Dispersion measurements with white-light interferometry”, J. Opt. Soc. Am. B 13 (6), 1120 (1996)
[9]R. Dandliker et al., “Distance measurement by multiple-wavelength interferometry”, J. Opt. 29 (3), 105 (1998)
[10]J. M. Schmitt, “Optical coherence tomography (OCT): a review”, IEEE J. Sel. Top. Quantum Electron. 5 (4), 1205 (1999)
[11]J. D. Monnier, “Optical interferometry in astronomy”, Rep. Prog. Phys. 66 (5), 789 (2003)
[12]A. Thüring et al., “Broadband squeezing of quantum noise in a Michelson interferometer with Twin-Signal-Recycling”, Opt. Lett. 34 (6), 824 (2009)
[13]J. Biophoton. 2 (6-7) (2009): special issue on optical coherence tomography
[14]B. P. Abbott et al., “Observation of gravitational waves from a binary black hole merger”, Phys. Rev. Lett. 116 (6), 061102 (2016)
[15]C. Hilweg et al., “Gravitationally induced phase shift on a single photon”, New J. Phys. 19, 033028 (2017)

(Suggest additional literature!)

See also: interference, optical phase, spectral interferometry, Gires–Tournois interferometers, Fabry–Pérot interferometers, white light interferometers, reference cavities, optical metrology, distance measurements with lasers, optical heterodyne detection, wavelength
and other articles in the categories optical metrology, photonic devices

Dr. R. Paschotta

This encyclopedia is authored by Dr. Rüdiger Paschotta, the founder and executive of RP Photonics Consulting GmbH. Contact this distinguished expert in laser technology, nonlinear optics and fiber optics, and find out how his technical consulting services (e.g. product designs, problem solving, independent evaluations, or staff training) and software could become very valuable for your business!

If you like this article, share it with your friends and colleagues, e.g. via social media: