RP Photonics logo
RP Photonics
Encyclopedia
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the
Virtual
Library

Intermodal Dispersion

<<<  |  >>>

Definition: the phenomenon that the group velocity of light propagating in a waveguide structure depends on the waveguide mode

German: intermodale Dispersion

Category: fiber optics and waveguides

How to cite the article; suggest additional literature

Intermodal dispersion (also called modal dispersion) is the phenomenon that the group velocity of light propagating in a multimode fiber (or other waveguide) depends not only on the optical frequency (→ chromatic dispersion) but also on the propagation mode involved.

Figure 1 shows a numerical simulation, where a 200-fs ultrashort pulse is launched into a 50 cm long multimode fiber such that multiple modes are excited. After the fiber, the corresponding contributions appear at different times due to different group velocities of the modes. The fundamental mode comes first, as it is the fastest.

intermodal dispersion

Figure 1: Output power versus time for a 200-fs input pulse injected into a 50 cm long multimode fiber. The numerical simulation has been done with the RP Fiber Power software.

intermodal dispersion

Figure 2: Time-dependent output beam profile for the same situation as in Figure 1.

The strength of intermodal dispersion can be quantified as the differential mode delay (DMD). It depends strongly on the refractive index profile of the fiber in and around the fiber core. For example, for a step-index profile the higher-order modes have lower group velocities, and this can lead to differential group delays of the order of 10 ps/m = 10 ns/km. It is then hardly possible to realize data rates of multiple Gbit/s in an fiber-optic link with a kilometer length.

In systems for optical fiber communications based on multimode fibers, intermodal dispersion can severely limit the achievable data transmission rate (bit rate). In order to avoid strong signal distortion, it is usually necessary to keep the pulses long enough to maintain a reasonable temporal overlap of components from different modes, and this unavoidably sets a limit on the data rate.

The natural way of eliminating intermodal dispersion is to use fiber links based on single-mode fibers, but intermodal dispersion can also be minimized by using multimode fibers with a parabolic refractive index profile, where intermodal dispersion is minimized.

Bibliography

[1]R. Paschotta, tutorial on "Passive Fiber Optics", Part 10: Nonlinearities of Fibers and Part 12: Ultrashort Pulses

(Suggest additional literature!)

See also: differential mode delay, dispersion, chromatic dispersion, fibers, multimode fibers, higher-order modes
and other articles in the category fiber optics and waveguides

If you like this article, share it with your friends and colleagues, e.g. via social media:

arrow