RP Photonics

Encyclopedia … combined with a great Buyer's Guide!


Laser Resonators

Definition: optical resonators serving as basic building blocks of lasers

German: Laserresonatoren

Categories: lasers, optical resonators

How to cite the article; suggest additional literature

A laser requires a laser resonator (or laser cavity), in which the laser radiation can circulate and pass a gain medium which compensates the optical losses. Exceptions are only exotic cases where a medium with very high gain is used, so that amplified spontaneous emission extracts significant power in a single pass through the gain medium.

The laser radiation is automatically generated at one or several frequencies corresponding to resonances (resonator modes), possibly with small deviations caused by “gain pulling”. No special measures are required for operating on the resonance; this is different for external resonators, e.g. resonant enhancement cavities.

linear and ring laser resonator
Figure 1: Two simple solid-state laser resonators with a laser crystal as gain medium. Output beams are generated where resonator mirrors are partially transmissive. The ring laser (right) can exhibit laser action in two directions, thus generate two output beams; unidirectional operation could be enforced, e.g. with an additional intracavity optical isolator.

Laser Resonators of Solid-state Lasers

Solid-state bulk lasers are usually built with several dielectric mirrors (laser mirrors), which may be plain or curved. Figure 1 shows a linear resonator and a ring resonator built in that way, and containing a laser crystal as the gain medium. In some cases, a dielectric mirror coating is placed on the gain medium itself; see the article on monolithic solid-state lasers. One of the mirrors, usually an end mirror, is the partially transmissive output coupler.

simple laser resonator
Figure 2: A simple laser resonator consists only of two mirrors around a diode-pumped laser head. Source: Cutting Edge Optronics.

The design of the laser resonator (comprising optical elements, angles of incidence, and distances between the components) determines the beam radius of the fundamental mode at all locations along the beam, together with other important properties. For maximum beam quality (→ diffraction-limited output), the beam radius in the gain medium has to match approximately the radius of the pumped region. For smaller beam radii, operation with multiple spatial modes is obtained, leading to a non-ideal beam quality; however, such multimode lasers have other advantages such as much wider stability zones and a lower sensitivity to misalignment.

In many cases, the laser resonator design should have additional features. For example, it can be optimized

Particularly for high-power lasers with good beam quality, thermal lensing in the gain medium is very important. The resonator design should be made so that changes of the thermal lens do not affect too much the mode sizes. Also, it should have a low sensitivity to thermal aberrations [2] and misalignment [1]. The importance of these factors should not be underestimated; there are cases where two resonators even with equal mode sizes in the gain medium lead to very different laser performance and are radically different in terms of alignment.

Although it is normally not that difficult to evaluate the properties of a given laser resonator, it can be challenging to find a resonator design which satisfies multiple criteria such as those listed above. Numerical optimization, using special resonator design software, can be the only way to find good solutions, particularly for some mode-locked lasers. Also, a solid understanding of resonator properties can help considerably when trying to find resonator configurations with special combinations of properties, such as large mode areas and short lengths. For advanced design issues, a great deal of experience is at least as important as a versatile design software.

Some high-power lasers (for example with slab designs) are operated with unstable resonators, allowing a reasonable (but typically not diffraction-limited) beam quality to be achieved despite the presence of strong thermal effects in the gain medium. Due to the high diffraction losses, such laser cavities require relatively high gain.

There are various types of monolithic solid-state lasers which have the whole beam path within the laser crystal. Beam reflections are then typically realized either with dielectric coatings on crystal surfaces, or with total internal reflection.

Physical Limitations

Although various properties of laser resonators can be optimized with a suitable resonator design, there are limitations, particularly for certain combinations of properties. For example, one can only to a limited extent combine the features of a short resonator length, large mode areas and low alignment sensitivity. Even optimized resonator designs can not fully meet desirable specifications for certain lasers, particularly high-power lasers.

Note also that laser resonators can not be considered as power-scalable in a useful sense, as discussed in the Spotlight article of 2009-09-19. This means that certain design challenges are more severe for lasers with higher output powers.


[1]V. Magni, “Multielement stable resonators containing a variable lens”, J. Opt. Soc. Am. A 4 (10), 1962 (1987)
[2]R. Paschotta, “Beam quality deterioration of lasers caused by intracavity beam distortions”, Opt. Express 14 (13), 6069 (2006)
[3]A. E. Siegman, Lasers, University Science Books, Mill Valley, CA (1986)
[4]N. Hodgson and H. Weber, Laser Resonators and Beam Propagation, Springer Series in Optical Sciences, Springer, Berlin (2005)
[5]R. Paschotta, case study on automatic resonator optimization with the RP Resonator software
[6]For German readers: R. Paschotta, “Resonatordesign – unterschätztes Potenzial für bessere Laser”, http://www3.interscience.wiley.com/cgi-bin/fulltext/116313857/PDFSTART, Laser Technik Journal 4 (4), p. 50 (2007)

(Suggest additional literature!)

See also: lasers, optical resonators, resonator design, monolithic solid-state lasers, laser mirrors, thermal lensing, stability zones, unstable resonators, Spotlight article 2007-02-22, Spotlight article 2009-09-19
and other articles in the categories lasers, optical resonators

Dr. R. Paschotta

This encyclopedia is authored by Dr. Rüdiger Paschotta, the founder and executive of RP Photonics Consulting GmbH. Contact this distinguished expert in laser technology, nonlinear optics and fiber optics, and find out how his technical consulting services (e.g. product designs, problem solving, independent evaluations, or staff training) and software could become very valuable for your business!

How do you rate this article?

Click here to send us your feedback!

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you enter any personal data, this implies that you agree with storing it; we will use it only for the purpose of improving our website and possibly giving you a response; see also our declaration of data privacy.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media: