RP Photonics logo
RP Photonics
Encyclopedia
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the
Virtual
Library

Laser Resonators

<<<  |  >>>  |  Feedback

Buyer's Guide

The ideal place to find suppliers for photonics products: high-quality information, simple and fast, and respects your privacy!

4 suppliers for laser resonators are listed.

You are not yet listed? Get your entry!

Ask RP Photonics for optimized designs of laser cavities, possibly taking into account a great variety of requirements, as discussed in the article. The powerful software RP Resonator is available.

Definition: optical resonators serving as basic building blocks of lasers

German: Laserresonatoren

Categories: lasers, optical resonators

How to cite the article; suggest additional literature

A laser requires a laser resonator (or laser cavity), in which the laser radiation can circulate and pass a gain medium which compensates the optical losses. Exceptions are only exotic cases where a medium with very high gain is used, so that amplified spontaneous emission extracts significant power in a single pass through the gain medium.

The laser radiation is automatically generated at one or several frequencies corresponding to resonances (resonator modes), possibly with small deviations caused by “gain pulling”. No special measures are required for operating on the resonance; this is different for external resonators, e.g. resonant enhancement cavities.

linear and ring laser resonator

Figure 1: Two simple solid-state laser resonators with a laser crystal as gain medium. Output beams are generated where resonator mirrors are partially transmissive. The ring laser (right) can exhibit laser action in two directions, thus generate two output beams; unidirectional operation could be enforced, e.g. with an additional intracavity optical isolator.

Laser Resonators of Solid-state Lasers

Solid-state bulk lasers are usually built with several dielectric mirrors (laser mirrors), which may be plain or curved. Figure 1 shows a linear resonator and a ring resonator built in that way, and containing a laser crystal as the gain medium. In some cases, a dielectric mirror coating is placed on the gain medium itself; see the article on monolithic solid-state lasers. One of the mirrors, usually an end mirror, is the partially transmissive output coupler.

simple laser resonator

Figure 2: A simple laser resonator consists only of two mirrors around a diode-pumped laser head. Source: Cutting Edge Optronics.

The design of the laser resonator (comprising optical elements, angles of incidence, and distances between the components) determines the beam radius of the fundamental mode at all locations along the beam, together with other important properties. For maximum beam quality (→ diffraction-limited output), the beam radius in the gain medium has to match approximately the radius of the pumped region. For smaller beam radii, operation with multiple spatial modes is obtained, leading to a non-ideal beam quality; however, such multimode lasers have other advantages such as much wider stability zones and a lower sensitivity to misalignment.

In many cases, the laser resonator design should have additional features. For example, it can be optimized

Particularly for high-power lasers with good beam quality, thermal lensing in the gain medium is very important. The resonator design should be made so that changes of the thermal lens do not affect too much the mode sizes. Also, it should have a low sensitivity to thermal aberrations [2] and misalignment [1]. The importance of these factors should not be underestimated; there are cases where two resonators even with equal mode sizes in the gain medium lead to very different laser performance and are radically different in terms of alignment.

Although it is normally not that difficult to evaluate the properties of a given laser resonator, it can be challenging to find a resonator design which satisfies multiple criteria such as those listed above. Numerical optimization, using special resonator design software, can be the only way to find good solutions, particularly for some mode-locked lasers. Also, a solid understanding of resonator properties can help considerably when trying to find resonator configurations with special combinations of properties, such as large mode areas and short lengths. For advanced design issues, a great deal of experience is at least as important as a versatile design software.

Some high-power lasers (for example with slab designs) are operated with unstable resonators, allowing a reasonable (but typically not diffraction-limited) beam quality to be achieved despite the presence of strong thermal effects in the gain medium. Due to the high diffraction losses, such laser cavities require relatively high gain.

There are various types of monolithic solid-state lasers which have the whole beam path within the laser crystal. Beam reflections are then typically realized either with dielectric coatings on crystal surfaces, or with total internal reflection.

Physical Limitations

Although various properties of laser resonators can be optimized with a suitable resonator design, there are limitations, particularly for certain combinations of properties. For example, one can only to a limited extent combine the features of a short resonator length, large mode areas and low alignment sensitivity. Even optimized resonator designs can not fully meet desirable specifications for certain lasers, particularly high-power lasers.

Note also that laser resonators can not be considered as power-scalable in a useful sense, as discussed in the Spotlight article of 2009-09-19. This means that certain design challenges are more severe for lasers with higher output powers.

Bibliography

[1]V. Magni, “Multielement stable resonators containing a variable lens”, J. Opt. Soc. Am. A 4 (10), 1962 (1987)
[2]R. Paschotta, “Beam quality deterioration of lasers caused by intracavity beam distortions”, Opt. Express 14 (13), 6069 (2006)
[3]A. E. Siegman, Lasers, University Science Books, Mill Valley, CA (1986)
[4]N. Hodgson and H. Weber, Laser Resonators and Beam Propagation, Springer Series in Optical Sciences, Springer, Berlin (2005)
[5]R. Paschotta, case study on automatic resonator optimization with the RP Resonator software
[6]For German readers: R. Paschotta, “Resonatordesign – unterschätztes Potenzial für bessere Laser”, http://www3.interscience.wiley.com/cgi-bin/fulltext/116313857/PDFSTART, Laser Technik Journal 4 (4), p. 50 (2007)

(Suggest additional literature!)

See also: lasers, optical resonators, resonator design, monolithic solid-state lasers, laser mirrors, thermal lensing, stability zones, unstable resonators, Spotlight article 2007-02-22, Spotlight article 2009-09-19
and other articles in the categories lasers, optical resonators

In the RP Photonics Buyer's Guide, 4 suppliers for laser resonators are listed.


Dr. R. Paschotta

This encyclopedia is authored by Dr. Rüdiger Paschotta, the founder and executive of RP Photonics Consulting GmbH. Contact this distinguished expert in laser technology, nonlinear optics and fiber optics, and find out how his technical consulting services (e.g. product designs, problem solving, independent evaluations, or staff training) and software could become very valuable for your business!

How do you rate this article?

Click here to send us your feedback!

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent
Comments:

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media:

arrow

RP Fiber Power – the versatile Fiber Optics Software

An Amazing Tool

RP Fiber Power software

This amazing tool is extremely helpful for the development of passive and active fiber devices.

ASE

Watch our quick video tour!

Single-mode and Multi­mode Fibers

fibers

Calculate mode properties such as

  • amplitude distributions (near field and far field)
  • effective mode area
  • effective index
  • group delay and chromatic dispersion

Also calculate fiber coupling efficiencies; simulate effects of bending, nonlinear self-focusing or gain guiding on beam propagation, higher-order soliton propagation, etc.

Arbitrary Index Profiles

A fiber's index profile may be more complicated than just a circle:

special fibers

Here, we "printed" some letters, translated this into an index profile and initial optical field, propagated the light over some distance and plotted the output field – all automated with a little script code.

Fiber Couplers, Double-clad Fibers, Multicore Fibers, …

fiber devices

Simulate pump absorption in double-clad fibers, study beam propagation in fiber couplers, light propagation in tapered fibers, analyze the impact of bending, cross-saturation effects in amplifiers, leaky modes, etc.

Fiber Amplifiers

fiber amplifier

For example, calculate

  • gain and saturation characteristics (for continuous or pulsed operation)
  • energy transfers in erbium-ytterbium-doped amplifier fibers
  • influence of quenching effects, amplified spontaneous emission etc.

in single amplifier stages or in multi-stage amplifier systems, with double-clad fibers, etc.

Fiber-optic Telecom Systems

eye diagram

For example,

  • analyze dispersive and nonlinear signal distortions
  • investigate the impact of amplifier noise
  • optimize nonlinear management and the placement of amplifiers

Find out in detail what is going on in such a system!

Fiber Lasers

fiber laser

For example, analyze and optimize the

  • power conversion efficiency
  • wavelength tuning range
  • Q switching dynamics
  • femtosecond pulse generation with mode locking

for lasers based on double-clad fiber, with linear or ring resonator, etc.

Ultrafast Fiber Lasers and Amplifiers

fiber laser

For example, study

  • pulse formation mechanisms
  • impact of nonlinearities and chromatic dispersion
  • parabolic pulse amplification
  • feedback sensitivity
  • supercontinuum generation

Apply any sequence of elements to your pulses!

… and even Bulk Devices

regenerative amplifier

For example, study

  • Q switching dynamics
  • mode-locking behavior
  • impact of nonlinearities and chromatic dispersion
  • influence of a saturable absorber
  • chirped-pulse amplification
  • regenerative amplification

RP Fiber Power is an extremely versatile tool!

Mode Solver

fiber modes

For example, calculate

  • amplitude and intensity profiles
  • effective mode areas
  • cut-off wavelengths
  • propagation constants
  • group velocities
  • chromatic dispersion

All this is calculated with high efficiency!

Beam Propagation

beam propagation

Propagate optical field with arbitrary wavefronts through fibers. These may be asymmetric, bent, tapered, exhibit random disturbances, etc.

See our demo video for numerical beam propagation.

Laser-active Ions

level scheme

Work with the standard gain model, or define your own level scheme!

Can include different ions, energy transfers, upconversion and quenching effects, complicated pumping schemes, etc.

Multiple Pump and Signal Waves, ASE

optical channels

Define multiple pump and signal waves and many ASE channels – each one with its own transverse intensity profile, loss coefficient etc.

The power calculations are highly efficient and reliable.

Simple Use and High Flexibility Combined

For simpler tasks, use convenient forms:

signal parameters

Script code is automatically generated and can then be modified by the user. A powerful script language gives you an unparalleled flexibility!

High-quality Documentation and Competent Support

The carefully prepared comprehensive documentation includes a PDF manual and an interactive online help system.

Competent technical support is provided: the developer himself will help you and make sure that any problem is solved!

Our support is like included technical consulting.

Boost your competence, efficiency and creativity!

  • Stop fishing in the dark! Develop a clear quantitative understanding of your devices.
  • Explore the effects of possible design changes on your desk.
  • That way, get most efficient in the lab.
  • Find optimized solutions efficiently, minimizing time to market.
  • Get new ideas by playing with your models.

Efficiency and success of
R & D are not a matter of chance.

See our detailed description with many case studies!

Contact us to get a quotation!

– Show all banners –

– Get your own banner! –