RP Photonics

Encyclopedia … combined with a great Buyer's Guide!


Non-radiative Transitions

Definition: transitions between energy levels of atoms or ions which are not associated with the emission of light

German: nichtstrahlende Übergänge

Category: physical foundations

How to cite the article; suggest additional literature

Atoms and ions, such as laser-active ion in laser gain media, have various excited energy levels. Transitions of such atoms and ions to lower-lying levels are often associated with the emission of photons (light). The generated photons carry with them the difference of energy between the involved energy levels. However, there are also mechanisms which allow for non-radiative transitions (or nonradiative or radiationless transitions), i.e., transitions not involving light. The excess energy is then dissipated in some other way – in most cases, in the form of phonons, which are associated with lattice vibrations of a solid. In liquids, similar phenomena can occur, but hardly in gases, where the atoms or molecules are not in contact with others for most of the time and therefore hardly have a chance to dissipate excitation energy non-radiatively.

Phonon emission is a very rapid process in solids in cases where the transition energy is smaller than the energy of some of the phonons of the lattice. The radiative transition is then effectively bypassed and cannot be observed. For larger transition energies, only multi-phonon transitions are possible, where one transition involves the emission of multiple phonons. The rate of such processes becomes rather small when more than about three phonons need to be emitted.

There are also quenching processes related to impurities or lattice defects, which have additional electronic levels to which excitation energy can be transferred. Such impurities or defects may affect only those ions which are sufficiently close to them, unless the laser ions are sufficiently close to each other to facilitate rapid energy transfer between them.

Nonradiative transitions tend to decrease the upper-state lifetime of laser gain media and thus to decrease (quench) the upper-level population, unless the nonradiative transition rates are negligible compared with the radiative ones. In that way, the gain efficiency (for continuous pumping) is reduced by non-radiative decay, also possibly the maximum achievable laser gain.

Note that nonradiative transitions are essential for the function of many solid-state laser gain media: they often facilitate the population of the upper laser level, if pumping occurs to a higher-lying level, and they also often help to depopulate the lower laser level and thus to avoid reabsorption losses.


[1]Z. Burshtein, “Radiative, nonradiative, and mixed-decay transitions of rare-earth ions in dielectric media”, Opt. Eng. 49, 091005 (2010)

(Suggest additional literature!)

See also: multi-phonon transitions, quenching, upper-state lifetime, gain media
and other articles in the category physical foundations

How do you rate this article?

Click here to send us your feedback!

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you enter any personal data, this implies that you agree with storing it; we will use it only for the purpose of improving our website and possibly giving you a response; see also our declaration of data privacy.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media: