RP Photonics logo
RP Photonics
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the

Nonlinear Index

<<<  |  >>>  |  Feedback

Buyer's Guide

Use the RP Photonics Buyer's Guide to find suppliers for photonics products! You will hardly find a more convenient resource.

Definition: a parameter for quantifying the Kerr nonlinearity of a medium

German: nichtlinearer Brechungsindex

Category: nonlinear optics

Formula symbol: n2

Units: m2/W

How to cite the article; suggest additional literature

When light with high intensity propagates through a medium, this causes nonlinear effects. The simplest of these is the Kerr effect, which can be described as a change (usually an increase) in the refractive index in proportion to the optical intensity I

index change via SPM

with the nonlinear refractive index n2. The units of that quantity are m2/W (or cm2/W) in the SI system, but in older literature one finds n2 values in esu units. For the conversion of such units, the equation

n2 in m2/W from esu units

can be used, where n is the refractive index.

Normally, nonlinear indices are measured for linearly polarized light. For circularly polarized light in a not birefringent medium, the Kerr effect is weaker by one third.

Conversion of Nonlinear Index Values

Refractive index:
n2 in SI units: calc
n2 in esu units: calc

Enter input values with units, where appropriate. After you have modified some values, click a "calc" button to recalculate the field left of it.

At very high optical intensities, the equation above for the nonlinear index change may need a higher-order correction. For example, one may have a term proportional to the index squared, with a negative coefficient, so that the Kerr effect saturates.

In addition to the Kerr effect (a purely electronic nonlinearity), electrostriction can significantly contribute to the value of the nonlinear index [5, 6]. Here, the electric field of light causes density variations (acoustic waves) which themselves influence the refractive index via the photoelastic effect. That mechanism, however, involves a significant time delay and is thus relevant only for relatively slow power modulations, but not for ultrashort pulses. In optical fibers, the contribution of electrostriction at low (megahertz) frequencies is typically of the order of 10–20% of that of the Kerr effect, but can strongly depend on the material.

For transparent crystals and glasses, n2 is typically of the order of 10−16 cm2/W to 10−14 cm2/W. Silica, as used e.g. in silica fibers, has a relatively low nonlinear index of 2.7 · 10−16 cm2/W for wavelengths around 1.5 μm, whereas some chalcogenide glasses exhibit several hundred times higher values. Semiconductor materials also have very high nonlinear index values. It has been shown that the nonlinear index scales in proportion to the inverse fourth power of the bandgap energy, but also depends on the proximity of the test wavelength to the bandgap [3]. The nonlinearity can also be negative (self-defocusing nonlinearity), particularly for photon energies above ≈ 70% of the bandgap energy.

Materials with a high nonlinear index often have a small bandgap energy, and therefore also often exhibit strong two-photon absorption (TPA). For some applications such as channel conversion in telecom systems, this is detrimental, and a figure of merit such as n2 / β (where β is the TPA coefficient) can be used to compare different materials.

The measurement of the nonlinear index of bulk samples is often done with the z-scan technique, which is based on self-focusing via the Kerr lens.

The nonlinearity of optical fibers can be quantified by measuring spectral broadening resulting from self-phase modulation. Note, however, that the polarization state may be scrambled in a non-polarization-maintaining fiber, and this can affect the result. Also, the result is a kind of average over the material properties of the fiber core and the cladding.


[1]M. J. Weber, D. Milam. and W. L. Smith, “Nonlinear refractive index of glasses and crystals”, Opt. Eng. 17, 463 (1978)
[2]M. Sheik-Bahae et al., “Sensitive measurement of optical nonlinearities using a single beam”, IEEE J. Quantum Electron. 26 (4), 760 (1990)
[3]M. Sheik-Bahae et al., “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption”, Phys. Rev. Lett. 65 (1), 96 (1990)
[4]K. S. Kim et al., “Measurement of the nonlinear index of silica-core and dispersion-shifted fibers”, Opt. Lett. 19 (4), 257 (1994)
[5]E. L. Buckland and R. W. Boyd, “Electrostrictive contribution to the intensity-dependent refractive index of optical fibers”, Opt. Lett. 21 (15), 1117 (1996)
[6]E. L. Buckland and R. W. Boyd, “Measurement of the frequency response of the electrostrictive nonlinearity in optical fibers”, Opt. Lett. 22 (10), 676 (1997)
[7]I. P. Nikolakakos et al., “Broadband characterization of the nonlinear optical properties of common reference materials”, IEEE Sel. Top. Quantum Electron. 10 (5), 1164 (2004)
[8]A. Major et al., “Dispersion of the nonlinear refractive index in sapphire”, Opt. Lett. 29 (6), 602 (2004)
[9]I. Dancus et al., “Single shot interferometric method for measuring the nonlinear refractive index”, Opt. Express 21 (25), 31303 (2013)

(Suggest additional literature!)

See also: Kerr effect, self-phase modulation, Kerr lens, refractive index, B integral, nonlinearities, z-scan measurements
and other articles in the category nonlinear optics

How do you rate this article?

Click here to send us your feedback!

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media:


Fiber Optics Software
with Further Improved
User Interface

In RP Fiber Power V6, one can use nice custom forms, which can be
tailored to specific applications.

custom form in RP Fiber Power

Users can make such forms themselves, or get them from RP Photonics within the technical support. The latter is like buying a custom software for every purpose – but without spending a lot of money every time!

Beginners can now get started very easily, even if they need quite special calculations!

– Show all banners –

– Get your own banner! –