Encyclopedia … combined with a great Buyer's Guide!

Optical Crystals

Definition: crystals for optical applications, usually single crystals, often with polished end faces

More general term: optical materials

More specific terms: nonlinear optical crystals, birefringent crystals

German: optische Kristalle

Category: optical materialsoptical materials


Cite the article using its DOI: https://doi.org/10.61835/27s

Get citation code: Endnote (RIS) BibTex plain textHTML

A wide range of optical materials is used in different fields of optics. As transparent materials, one often uses optical glasses, but for various applications one requires optical crystal materials – mostly monocrystalline materials – because of their special properties:

Most optical crystals are insulating (dielectric) materials, having a wide band gap and very low absorption in the visible spectral region. However, there are also semiconductors used as optical crystals, e.g. as infrared crystals, where intense absorption in the visible region is not relevant.

Optical crystals are made with a wide range of geometric shapes, including simple cuboids, but also cylinders and other shapes with curved surfaces. A special form of crystals are single-crystal fibers, often having an extreme radio of length to diameter.

Various Aspects of Optical Crystals

Fabrication; Crystal Lattice Orientation

In most cases, optical crystals are single crystals, i.e., they exhibit a uniform crystal lattice throughout a large piece, apart from some concentration of lattice defects. This uniform orientation can generally not be achieved e.g. simply by cooling down the molten material (as for an optical glass) because that would generally lead to a large number of crystal domains with different lattice orientations. Instead, one needs to employ special crystal growth techniques such as the Czochralski method or the Bridgman–Stockbarger technique. Typically, a small monocrystalline seed crystal is provided, and the growth conditions are optimized such that all added material just extends the lattice of the seed crystal rather than forming new domains. In most cases, the growth rate needs to be kept at a rather low level, as otherwise a sufficiently high crystal material quality could not be achieved.

In many cases, the purity of the used raw materials must be quite high – substantially higher than for frequently used optical glasses.

For the application, it is usually required to guarantee an appropriate orientation of the crystal lattice e.g. relative to the propagation direction of a light beam or to the end faces. This is an additional complication for the fabrication process, where one might have to employ methods like X-ray diffraction for accurately determining the crystal orientation, if the orientation is not already sufficiently well determined by the crystal growth process.

Obviously, the explained aspects of material purity, carefully controlled growth conditions and the observation of lattice orientation lead to a fabrication cost which is in most cases substantially higher than for glass materials.

Propagation Losses

The propagation losses of light are often quite low in crystalline materials compared with glasses. This is partly due to the high material quality (e.g. with a low concentration of absorbing impurities) and partly due to the uniform crystal lattice, avoiding the unavoidable Rayleigh scattering at density fluctuations in glasses.

Low propagation losses can be important not only for maximizing the transmission, but also for minimizing thermal effects, e.g. In high-power laser applications.

Thermal Properties

Generally, crystalline materials exhibit substantially higher thermal conductivity than amorphous materials like glasses. This is essentially because phonons (quanta of lattice vibrations) can propagate over long lengths in a crystal, while they are subject to substantial scattering in amorphous media. A high thermal conductivity minimizes temperature gradients and thus optical effects like thermal lensing in cases where a substantial amount of heat is deposited in a crystal.

Many crystal materials exhibit substantially anisotropic thermal expansion, i.e., upon heating they expand more in certain directions than in others. That can be particularly relevant when end faces need to be equipped with dielectric coatings. As the latter generally exhibit isotropic thermal expansion, it is not possible to fully match the expansion coefficients with any choice of coating materials. Therefore, certain coated crystals should be exposed only to limited temperature cycling because otherwise the dielectric coatings may be damaged. This is particularly relevant for nonlinear crystal materials when one uses noncritical phase matching at substantially elevated operation temperatures.

More to Learn

Encyclopedia articles:


The RP Photonics Buyer's Guide contains 88 suppliers for optical crystals. Among them:

Questions and Comments from Users

Here you can submit questions and comments. As far as they get accepted by the author, they will appear above this paragraph together with the author’s answer. The author will decide on acceptance based on certain criteria. Essentially, the issue must be of sufficiently broad interest.

Please do not enter personal data here. (See also our privacy declaration.) If you wish to receive personal feedback or consultancy from the author, please contact him, e.g. via e-mail.

Spam check:

By submitting the information, you give your consent to the potential publication of your inputs on our website according to our rules. (If you later retract your consent, we will delete those inputs.) As your inputs are first reviewed by the author, they may be published with some delay.


Share this with your network:

Follow our specific LinkedIn pages for more insights and updates: