RP Photonics logo
RP Photonics
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the

Optical Fiber Communications

<<<  |  >>>  |  Feedback

Buyer's Guide

The ideal place to find suppliers for photonics products: high-quality information, simple and fast, and respects your privacy!

48 suppliers for equipment for optical fiber communications are listed.

You are not yet listed? Get your entry!

Ask RP Photonics for advice concerning the physical principles or various technical details of optical fiber communications. RP Photonics also has the RP Fiber Power software – see a demo case for data transmission in a fiber.

Definition: the technology of transmitting information through optical fibers

German: optische Faserkommunikation, Kommunikation mit Glasfasern

Categories: lightwave communications, fiber optics and waveguides

How to cite the article; suggest additional literature

Optical fibers can be used to transmit light and thus information over long distances. Fiber-based systems have largely replaced radio transmitter systems for long-haul optical data transmission. They are widely used for telephony, but also for Internet traffic, long high-speed local area networks (LANs), cable TV (CATV), and increasingly also for shorter distances within buildings. In most cases, silica fibers are used, except for very short distances, where plastic optical fibers can be advantageous.

Compared with systems based on electrical cables, the approach of optical fiber communications (lightwave communications) has advantages, the most important of which are:

See also our useful tutorial "Passive Fiber Optics"! This explains many aspects of fiber optics using interesting simulations.

Mostly due to their very high data transmission capacity, fiber-optic transmission systems can achieve a much lower cost than systems based on coaxial copper cables, if high data rates are needed. For low data rates, where their full transmission capacity cannot be utilized, fiber-optic systems may have less of an economic advantage, or may even be more expensive (not due to the fibers, but the additional transceivers). The primary reason, however, for the still widespread use of copper cables for the “last mile” (the connection to the homes and offices) is simply that copper cables are already laid out, whereas new digging operations would be required to lay down additional fiber cables.

Fiber communications are already extensively used within metropolitan areas (metro fiber links), and even fiber to the home (FTTH) spreads more and more – particularly in Japan, where private Internet users can already obtain affordable Internet connections with data rates of 100 Mbit/s – well above the performance of current ADSL systems, which use electrical telephone lines. In other countries, one often tries to squeeze out higher transmission capacities from existing copper cables, e.g. with the technique of vectoring, in order to avoid the cost of laying down fiber cables to the premises. This, however, is more and more seen only as a temporary solution, which cannot satisfy further growth of bandwidth demand.

Telecom Windows

Optical fiber communications typically operate in a wavelength region corresponding to one of the following “telecom windows”:

The second and third telecom windows are further subdivided into the following wavelength bands:

Band Description Wavelength range
O band original 1260–1360 nm
E band extended 1360–1460 nm
S band short wavelengths 1460–1530 nm
C band conventional (“erbium window”) 1530–1565 nm
L band long wavelengths 1565–1625 nm
U band ultralong wavelengths 1625–1675 nm

The second and third telecom windows were originally separated by a pronounced loss peak around 1.4 μm, but they can effectively be joined with advanced fibers with low OH content which do not exhibit this peak.

System Design

The simplest type of fiber-optic communication system is a fiber-optic link providing a point-to-point connection with a single data channel. Such a link essentially contains a transmitter for sending the information optically, a transmission fiber for transmitting the light over some distance, and a receiver. The transmission fiber may be equipped with additional components such as fiber amplifiers for regenerating the optical power or dispersion compensators for counteracting the effects of chromatic dispersion. The article on fiber-optic links gives more details.

A typical channel capacity for long-haul transmission is nowadays 2.5 or 10 Gbit/s; 40, 100 or even 160 Gbit/s may be used in the future. More advanced systems increase the transmission capacity by simultaneously using several, dozens or even hundreds of different wavelength channels (coarse or dense wavelength division multiplexing). The main challenges are to suppress channel cross-talk via nonlinearities, to balance the channel powers (e.g. with gain-flattened fiber amplifiers), and to simplify the systems. Another approach is time division multiplexing, where several input channels are combined by nesting in the time domain, and solitons are often used to ensure that the sent ultrashort pulses stay cleanly separated even at small pulse-to-pulse spacings.

Another important development is that of systems which link many different stations with a sophisticated fiber-optic network. This approach can be very flexible and powerful, but also raises a number of non-trivial technical issues, such as the need for adding or dropping wavelength channels, ideally in a fully reconfigurable manner, or to constantly readjust the connection topology so as to obtain optimum performance, or to properly handle faults so as to minimize their impact on the overall system performance. As many different concepts (e.g. concerning topologies, modulation formats, dispersion management, nonlinear management, and software) and new types of devices (senders, receivers, fibers, fiber components, electronic circuits) are constantly being developed, it is not clear so far which kind of system will dominate the future of optical fiber communications.

For a discussion of aspects such as bit error rates and power penalties, see the article on optical data transmission.

Transmission Capacity of Optical Fibers

Within the last 30 years, the transmission capacity of optical fibers has been increased enormously. The rise in available transmission bandwidth per fiber is even significantly faster than e.g. the increase in storage capacity of electronic memory chips, or in the increase in computation power of microprocessors.

The transmission capacity of a fiber depends on the fiber length. The longer a fiber is, the more detrimental certain effects such intermodal or chromatic dispersion are, and the lower is the achievable transmission rate.

For short distances of a few hundred meters or less (e.g. within storage area networks), it is often more convenient to utilize multimode fibers, as these are cheaper to install (for example, due to their large core areas, they are easier to splice). Depending on the transmitter technology and fiber length, they achieve data rates between a few hundred Mbit/s and ≈ 10 Gbit/s.

Single-mode fibers are typically used for longer distances of a few kilometers or more. Currently used commercial telecom systems typically transmit 10 Gbit/s or 40 Gbit/s per data channel over distances of ten kilometers or more. The newest available systems (as of 2014) reach 100 Gbit/s, and future systems may use higher data rates per channel of e.g. 160 Gbit/s. The required total capacity is usually obtained by transmitting many channels with slightly different wavelengths through fibers; this is called wavelength division multiplexing (WDM). Total data rates can be over 1 Tbis/s, sufficient for transmitting many millions of telephone channels simultaneously. Even that capacity does not reach by far the physical limit of an optical fiber. In addition, note that a fiber-optic cable can contain multiple fibers.

In conclusion, there should be no concern that technical limitations to fiber-optic data transmission could become severe in the foreseeable future. On the contrary, the fact that data transmission capacities can evolve faster than e.g. data storage and computational power, has inspired some people to predict that any transmission limitations will soon become obsolete, and large computation and storage facilities within high-capacity data networks will be extensively used, in a similar way as it has become common to use electrical power from many power stations within a large power grid. Such developments may be more severely limited by software and security issues than by the limitations of data transmission.

Key Components for Optical Fiber Communications

Optical fiber communication systems rely on a number of key components:

In many cases, optical and electronic components for fiber communications are combined on photonic integrated circuits. Further progress in this technological area will help optical fiber communications to be extended to private households (→ fiber to the home) and small offices.


[1]N. A. Olsson, “Lightwave systems with optical amplifiers”, J. Lightwave Technol. LT-7, 1071 (1989)
[2]D. O. Caplan, “Laser communication transmitter and receiver design”, J. Opt. Fiber Commun. Rep. 4, 225 (2007)
[3]International Telecommunication Union (ITU), http://www.itu.int/home/index.html
[4]G. P. Agrawal, Fiber-Optic Communication Systems, John Wiley & Sons, New York (2002)
[5]H. J. R. Dutton, Understanding Optical Communications, http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg245230.pdf, IBM Redbooks
[6]Illustrated fiber optic glossary, http://www.fiber-optics.info/glossary-a.htm
[7]R. Paschotta, tutorial on "Passive Fiber Optics"

(Suggest additional literature!)

See also: fibers, fiber cables, telecom fibers, silica fibers, erbium-doped fiber amplifiers, optical data transmission, fiber-optic links, fiber-optic networks, quantum cryptography, fiber to the home, free-space optical communications
and other articles in the categories lightwave communications, fiber optics and waveguides

In the RP Photonics Buyer's Guide, 94 suppliers for equipment for optical fiber communications are listed.

Dr. R. Paschotta

This encyclopedia is authored by Dr. Rüdiger Paschotta, the founder and executive of RP Photonics Consulting GmbH. Contact this distinguished expert in laser technology, nonlinear optics and fiber optics, and find out how his technical consulting services (e.g. product designs, problem solving, independent evaluations, or staff training) and software could become very valuable for your business!

How do you rate this article?

Click here to send us your feedback!

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media:


RP Fiber Power – the versatile Fiber Optics Software

An Amazing Tool

RP Fiber Power software

This amazing tool is extremely helpful for the development of passive and active fiber devices.


Watch our quick video tour!

Single-mode and Multi­mode Fibers


Calculate mode properties such as

  • amplitude distributions (near field and far field)
  • effective mode area
  • effective index
  • group delay and chromatic dispersion

Also calculate fiber coupling efficiencies; simulate effects of bending, nonlinear self-focusing or gain guiding on beam propagation, higher-order soliton propagation, etc.

Arbitrary Index Profiles

A fiber's index profile may be more complicated than just a circle:

special fibers

Here, we "printed" some letters, translated this into an index profile and initial optical field, propagated the light over some distance and plotted the output field – all automated with a little script code.

Fiber Couplers, Double-clad Fibers, Multicore Fibers, …

fiber devices

Simulate pump absorption in double-clad fibers, study beam propagation in fiber couplers, light propagation in tapered fibers, analyze the impact of bending, cross-saturation effects in amplifiers, leaky modes, etc.

Fiber Amplifiers

fiber amplifier

For example, calculate

  • gain and saturation characteristics (for continuous or pulsed operation)
  • energy transfers in erbium-ytterbium-doped amplifier fibers
  • influence of quenching effects, amplified spontaneous emission etc.

in single amplifier stages or in multi-stage amplifier systems, with double-clad fibers, etc.

Fiber-optic Telecom Systems

eye diagram

For example,

  • analyze dispersive and nonlinear signal distortions
  • investigate the impact of amplifier noise
  • optimize nonlinear management and the placement of amplifiers

Find out in detail what is going on in such a system!

Fiber Lasers

fiber laser

For example, analyze and optimize the

  • power conversion efficiency
  • wavelength tuning range
  • Q switching dynamics
  • femtosecond pulse generation with mode locking

for lasers based on double-clad fiber, with linear or ring resonator, etc.

Ultrafast Fiber Lasers and Amplifiers

fiber laser

For example, study

  • pulse formation mechanisms
  • impact of nonlinearities and chromatic dispersion
  • parabolic pulse amplification
  • feedback sensitivity
  • supercontinuum generation

Apply any sequence of elements to your pulses!

… and even Bulk Devices

regenerative amplifier

For example, study

  • Q switching dynamics
  • mode-locking behavior
  • impact of nonlinearities and chromatic dispersion
  • influence of a saturable absorber
  • chirped-pulse amplification
  • regenerative amplification

RP Fiber Power is an extremely versatile tool!

Mode Solver

fiber modes

For example, calculate

  • amplitude and intensity profiles
  • effective mode areas
  • cut-off wavelengths
  • propagation constants
  • group velocities
  • chromatic dispersion

All this is calculated with high efficiency!

Beam Propagation

beam propagation

Propagate optical field with arbitrary wavefronts through fibers. These may be asymmetric, bent, tapered, exhibit random disturbances, etc.

See our demo video for numerical beam propagation.

Laser-active Ions

level scheme

Work with the standard gain model, or define your own level scheme!

Can include different ions, energy transfers, upconversion and quenching effects, complicated pumping schemes, etc.

Multiple Pump and Signal Waves, ASE

optical channels

Define multiple pump and signal waves and many ASE channels – each one with its own transverse intensity profile, loss coefficient etc.

The power calculations are highly efficient and reliable.

Simple Use and High Flexibility Combined

For simpler tasks, use convenient forms:

signal parameters

Script code is automatically generated and can then be modified by the user. A powerful script language gives you an unparalleled flexibility!

High-quality Documentation and Competent Support

The carefully prepared comprehensive documentation includes a PDF manual and an interactive online help system.

Competent technical support is provided: the developer himself will help you and make sure that any problem is solved!

Our support is like included technical consulting.

Boost your competence, efficiency and creativity!

  • Stop fishing in the dark! Develop a clear quantitative understanding of your devices.
  • Explore the effects of possible design changes on your desk.
  • That way, get most efficient in the lab.
  • Find optimized solutions efficiently, minimizing time to market.
  • Get new ideas by playing with your models.

Efficiency and success of
R & D are not a matter of chance.

See our detailed description with many case studies!

Contact us to get a quotation!

– Show all banners –

– Get your own banner! –